Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние материала поверхностного слоя при трении

СОСТОЯНИЕ МАТЕРИАЛА ПОВЕРХНОСТНОГО СЛОЯ ПРИ ТРЕНИИ  [c.113]

Из анализа состояния материала поверхностного слоя при трении можно сделать вывод, что процесс износа трущейся поверхности не может быть сведен к однозначному определению и установлению каких-либо классификаций износа как самостоятельных процессов (окислительный, тепловой и пр.), определяющих ведущий характер разрушения материала трущейся поверхности.  [c.119]


Закономерности образования белой полосы, очевидно, можно установить на основании детального исследования состояния материала поверхностного слоя при трении.  [c.122]

Структурные изменения меди при трении без смазки. Особенности структурного состояния тончайших поверхностных слоев при трении без смазки (гл. 1) были учтены при исследовании зависимости характера пластического течения материала зоны деформации от степени фрикционного упрочнения.  [c.119]

Основные виды изнашивания следуюш,ие механическое — результат механических воздействий коррозионно-механическое — механическое воздействие сопровождается химическим или электрическим взаимодействием со средой абразивное — результат режущего или царапающего действия твердых частиц, находящихся в свободном или закрепленном состоянии эрозионное — результат воздействия потока жидкости или газа усталостное — выкрашивание частиц материала поверхностного слоя при Периодически меняющейся нагрузке (этот вид изнашивания особенно характерен для высших кинематических пар) изнашивание при заедании — результат схватывания, глубинного вырывания материала, переноса его с одной поверхности трения на другую (заедание или схватывание характеризуется сильным местным нагревом вследствие высоких скоростей скольжения и больших удельных давлений такому виду изнашивания чаще всего подвержены незакаленные трущиеся поверхности кинематической пары из однородных материалов).  [c.243]

Очевидно, такие специфические условия протекания температурных явлений в поверхностном слое при трении порождают многие другие физические процессы, которые могут оказывать существенное влияние на состояние материала поверхностного слоя.  [c.117]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]


Авторы отмечают, что поверхностный слой трущихся деталей в процессе трения резко изменяет сво ю структуру и переходит в активное состояние. Материал стремится немедленно перейти из термодинамически неравновесного в пассивное состояние путем адсорбционного, диффузионного или механического взаимодействия с внешней средой. Этот новый слой и становится объектом поверхностного разрушения при трении. Если процессы разрушения охватывают только новы й слой, образовавшийся в процессе трения, то происходит нормальное трение, к чему и надо стремиться. Если же разрушение поверхности происходит вне зоны образовавшегося нового слоя (например, при схватывании, микрорезании, фреттинг-процессе и др.), то изнашивание протекает ненормально — с повреждаемостью поверхности детали.  [c.24]

В первоначальной трактовке образование третьего тела рассматривалось в основном с позиций механики. На формирование концепции третьего тела повлияли исследования, выполненные Б. И. Костецким и его сотрудниками в области теории структурной приспосабливаемости материалов при трении [79]. Эти исследования базировались на обобщенном термодинамическом подходе к паре трения как к системе, проявляющей самопроизвольно свойство адаптироваться к действию внешних факторов. Адаптация при этом понимается в широком значении этого слова, включающем изменения и в химическом составе и в структуре поверхностного слоя. В работах Б. И. Костецкого использовано понятие вторичной структуры для определения состояния трансформированного поверхностного слоя материала в узле трения. Первоначально под вторичными структурами понимали в основном окисные пленки, но затем это понятие расширилось, охватывая любое изменение структуры в направлении, способствующем установлению оптимального энергетического состояния трибосистемы [80]. В этом широком понимании термин вторичная структура охватывает практически тот же комплекс свойств, что и термин третье тело ,  [c.33]

В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-  [c.111]

Изучение физических закономерностей изменения структурно-фазо-вого и напряженно-деформированного состояния поверхностного слоя деталей при трении, накопление и обобщение результатов экспериментальных исследований и опыта эксплуатации трибосистем различного вида и назначения позволили определить физические основы структурной модификации материалов трибосистем. В главе 6 показано, что в качестве физической основы структурной модификации выступают закономерности фазовых переходов, определяемые уровнем потенциала Гиббса или свободной энергией системы. А переход из одного фазового состояния в другое сопровождается существенным изменением внутреннего строения и физических свойств системы. Фазы выступают в качестве элементов структуры любого материала (сплава,  [c.268]

Исследовательские испытания на износ включают обычно металлографические исследования тонких поверхностных слоев для оценки структурных превращений под влиянием сил трения и тепла Б зоне контакта. При этом применяются специальные приемы, например метод косого среза, для выявления переходных зон поверхностного слоя. Исследуется также микротвердость структурных составляющих, механические характеристики материала, его теплофизические свойства, геометрия поверхностного слоя (шероховатость, волнистость), его напряженное состояние и другие характеристики.  [c.488]


Связь трения и износа с неровностями поверхности. Современная молекулярно-механическая теория трения объясняет силу сухого (и граничного) трения скольжения образованием и разрушением адгезионных мостиков холодной сварки контактирующих участков шероховатой поверхности и зацеплением (и внедрением) неровностей 110, 40]. Трение обусловлено объемным деформированием материала и преодолением межмолекулярных связей, возникающих между сближенными участками трущихся поверхностей. При этом износ протекает в виде отделения частиц за счет многократного изменения напряжения и деформации на пятнах фактического контакта при внедрении неровностей истирающей поверхности в истираемую поверхность. Во многих случаях износ имеет усталостный характер растрескивания поверхностного слоя под влиянием повторных механических и термических напряжений, соединения трещин на некоторой глубине и отделения материала от изнашиваемого тела. Интенсивность изнашивания зависит от величины фактического контакта и напряженного состояния изнашиваемого тела, которые в свою очередь в сильной степени зависят от размеров и формы неровностей и, в частности, от радиусов закругления выступов. В обычных условиях истирающая поверхность является существенно более жесткой и шероховатой по сравнению с той, износ которой определяется, и ее неровности оказываются статистически стабильными при установившемся режиме трения. Таким образом, в отношении износостойкости деталей неровности их поверхностей имеют первостепенное значение.  [c.46]

Глубинная опасная зона была обнаружена при изучении свойств поверхностных слоев технически чистых металлов — меди и алюминия[24]. В тяжелых условиях трения при значительном тепловыделении на поверхности существенную роль начинают играть процессы отдыха, и кривая распределения микротвердости (которой автор характеризует напряженное состояние материала) по глубине имеет заметно выраженный максимум. Таким образом, характер распределения пластической деформации по глубине определяется сочетанием условий трения и физико-механических свойств контактирующих материалов. Положение максимума пластической деформации определяет место возникновения первичной трещины па поверхности или на некотором расстоянии от нее.  [c.9]

При количественной оценке периодичности структурных изменений I большое значение приобретает выбор интервала исследования. Только при больших контактных давлениях, близких к пределу текучести материала, прослеживая за изменением состояния поверхностного слоя от цикла к циклу, представляется возможным определить период, за время которого материал проходит всю стадию от упрочнения до разрушения ную зависимость от условий трения.  [c.49]

От скорости качения и удельной скорости скольжения зависят напряжения, тепловое состояние зоны контакта и физико-механические изменения поверхностного слоя. Кратковременные перегрузки зубчатых колес, сопровождаемые разрушением масляной пленки, а также пуски тихоходных передач, находящихся под нагрузкой, повышают контактную прочность вследствие износа материала с зачатками усталостных трещин. Влияние смазочного материала сложное повышение его вязкости положительно влияет на нагрузочную способность передачи, однако увеличивает силы трения и касательные напряжения. Контактная прочность зубьев колес при недостаточном смазывании погружением выше, чем при обильной подаче масла при смазывании погружением она больше, чем при струйном. Это можно, видимо, объяснить большим гидродинамическим давлением в зарождающихся усталостных трещинах при струйном смазывании, когда оно производится жидким маслом, а не в смеси с воздухом.  [c.249]

Указанные свойства пленки меди, зафиксированные после раскрытия контактной пары, подтверждают высказанные ранее представления [16], согласно которым в процессе трения материал тонких поверхностных слоев находится в состоянии, подобном расплавленному. Полученное авторами значение периода кристаллической решетки пленки меди согласуется с результатами работы [83], в которой такое же пониженное значение периода решетки меди получено в результате быстрой закалки ее из жидкой фазы. Состояние металла, подобное жидкому, обеспечивает легкое взаимное перемещение контактирующих поверхностей и малые значения коэффициента трения и износа. Трение меди о сталь в условиях избирательного переноса можно уподобить скольжению твердого тела по льду, при котором низкий коэффициент трения обеспечивает пленка расплавленного материала.  [c.114]

Методы решения диффузионных задач многообразны в зависимости от конкретных условий исследовательской практики. Они подробно изложены в работе [18] и относятся в основном объемным изменениям в структуре металлов и сплавов. Исследования диффузионных процессов при трении связаны со значительными экспериментальными и теоретическими трудностями. Последние обусловлены тем обстоятельством, что структура металлических систем формируется в результате сложной совокупности процессов, происходящих при трении и вызванных высоким уровнем напряжений, влиянием окружающей среды (см. гл. 4), значительными объемными и поверхностными температурами и температурными градиентами. Многочисленные экспериментальные данные показывают, что процессы структурных изменений при трении локализуются в тонких поверхностных слоях, и активная зона может быть отнесена к тонкопленочным объектам. Масштабный эффект сопровождается многообразием отклонений физических и физико-химических свойств системы от монолитного состояния для сплавов наиболее характерной особенностью является значительное изменение пределов растворимости. Кроме того, структура поверхностей трения является диссипативной, т. е. образующейся и поддерживаемой в нелинейной системе с большим числом степеней свободы с помощью внешнего источника энергии [71, 109]. Вторичная структура (диссипативная структура, формирующаяся при трении) — результат неустойчивости, образуется вследствие флуктуаций мерой скорости ее образования является производство избыточной энтропии. Структура поверхности трения — это новое состояние вещества вдали от равновесия и неустойчивости, порожденное потоком свободной энергии и приводящее к новым типам организации материи за  [c.139]


При обработке резанием металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, происходящих с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра например, после шлифования наружный слой стальной детали, закаленной на мартенсит, оказывается закаленным на аустенит следующий слой — на троостит, и только после этого слоя следует слой с первоначальной мартенситной структурой. На качество поверхности влияют смазочно-охлаждающие жидкости. Они уменьшают трение между инструментом и заготовкой и понижают температуру трущихся поверхностей. Наклеп и шероховатость поверхности зависят от вибрации станка, инструмента и заготовки. Колебательные движе-  [c.19]

Сваркой получают неразъемные соединения деталей из однородного полимера за счет взаимного проникновения (диффузии) частиц поверхностных слоев в расплавленном состоянии при определенном давлении прижима. Существующие различные методы сварки пластмасс можно условно разделить на 3 группы сварка с помощью внешних источников теплоты (нагретые газ, инструмент, присадочный материал, трение), сварка с помощью внутренних источников теплоты (токи высокой частоты, ультразвук) и так называемая химическая сварка.  [c.161]

Поверхности трения деталей машин при эксплуатации претерпевают существенные изменения. Меняются размеры и геометрические характеристики, структура, свойства и напряженное состояние поверхностных слоев. Эти изменения могут иметь монотонный и резко выраженный скачкообразный характер. Они могут охватывать макро-, микро- и субмикроскопические объемы. Характер изменений в значительной мере зависит от кинематики движения (рода трения—качения или скольжения), условий механического нагружения, наличия и состава жидкой, твердой или газообразной среды, вида смазки, концентрации кислорода, материала (химического состава, структуры, механических свойств и методов обработки и т. п.). Изменения могут быть полезными, нормализующими внешнее трение и способствующими минимизации износа, или приводить к недопустимым явлениям резко выраженной повреждаемости.  [c.250]

Первый вид заключается в приведении поверхностных слоев в постоянное состояние размягчения оно возникает в том случае, если температурный режим на поверхностях сохраняется относительно стабильным во все время работы трения. При этом прогрев материала идет на значительную глубину, вызывая в некоторых случаях коагуляцию отдельных составляющих. Такой процесс наблюдал В. В. Чернышев [43] при сухом трении кольцевых образцов, находящихся в непрерывном контакте (трение торцами).  [c.19]

Разрабатывая молекулярно-механическую теорию трения, проф. Крагельский И. В. предложил рассматривать образующуюся фрикционную связь между двумя трущимися телами как некоторое физическое тело, обладающее определенными свойствами, отличающимися от свойств обоих трущихся тел [179]. Это так называемое третье тело является, некоторого рода, связью, обладающей упруго-вязким характером. На свойства этой связи оказывают влияние состояние поверхности, величина давления между телами, время контактирования, скорость приложения нагрузки и т. п. Вследствие дискретного характера контактирования выступы, имеющиеся на поверхностях трения, сглаживаются или сменяются впадинами, т. е. материал в поверхностном слое при трении непрерывно передеформируется. Рассматривая область передеформирования как третье тело , можно считать, что силы внешнего трения обусловлены силами вязкого сдвига, возникающими в деформативной области обоих тел. В этой области происходят значительные пластические деформации, обусловленные возникновением в контактных точках высоких  [c.547]

Таким образом, высокая плотность вакансий в поверхностных слоях при трении в условиях избирательного переноса дает основание полагать материал достигает состояния, близкого к расплаву, но при этом температура материала пленки близка к температуре кристаллизации такое чисЛо вакансий обеспечивает достаточно высокую подвижность атомов пленки, обусловливающую диффузионно-вакансионный механизм формоизменения в зоне контакта, который можно рассматривать с пбзиций дырочной теории жидкого состояния [105].  [c.118]

При определении коэффициента внешнего трения необходимо исходить из напряженного состояния в зонах фактического касания. В общем случае вследствие распределения вершин микронеровностей по высоте микроиеров-ности в зависимости от глубины внедрения могут деформировать материал поверхности менее жесткого тела упруго, упругоиластнчески или пластически. Границы между каждым из Ердов деформирования определяют, решая соответствующие контактные задачи теорий упругости и пластичности. Однако в ряде случаев (например, при трении резин, а также металлов при небольших контурных давлениях) в зонах касания возникают упругие деформации. Как показывает анализ, при внедрениях, соответствующих пластическим деформациям, в зонах касания поверхностей с наиболее распространенными Б инженерной практике параметрами шероховатостей основные силовые взаимодействия приходятся ia микронеровности, деформирующие материал поверхностного слоя менее жесткого тела пластически. Поэтому в настоящее время принято оценивать взаимодействие твердых тел при упругих и пластических деформациях в зонах касания. Теория взаимодействия твердых тел ири упругопластических деформациях пока ещё не разработана.  [c.192]

При трении в условиях избирательного переноса, как пока-зали результаты многих исследований [72], образующаяся на контактирующих поверхностях металлическая пленка обусловливает малые значения коэффициента трения и величины износа. Структура и свойства этой пленки, определяющие механизм поведения материала в зоне контакта, исследованы явно недоста-,./ точно. До получения результатов исследования авторами данной работы известно было лишь, что поверхностный слой медного сплава обогащен медью. При трении бронзы о сталь в спиртоглицериновой смеси параметр кристаллической решетки поверхностных слоев, определенный рентгенографическим методом, оказался меньше, чем у исходного раствора, и стремился к параметру чистой меди. Методом радиоактивных изотопов удалось установить, что интенсивность импульсов радиоактивного цинка-65, содержащегося в исходном состоянии в бронзе типа БрОЦС в количестве 1 %, в материале поверхностного слоя после трения в 26 раз  [c.101]

В состоянии покоя указанная деформация вызывается силой yVij. Для осуществления качения к колесу нужно приложить движущую силу Р, работа которой затрачивается на деформацию и трение скольжения в непрерывно вступающих в контакт новых поверхностных слоях колеса и плоскости. Так как при качении колеса вправо упругие деформации колеса и плоскости на участке СА исчезают не мгновенно (вследствие внутреннего трения между частицами материала), то давление на участке СА оказывается меньше, чем на участке AD, и реакция N21 (равнодействующая давления плоскости на колесо) смещается от точки А в сторону качения на расстояние к, т. е. в точку В. При качении колеса впереди его на участке AD образуется как бы волнооб-, разный подъем, через который колесу непрерывно надо перекаты- ваться. Переменное напряженное состояние, перемещающееся вместе с зоной контакта, вызывает в колесе и в плоскости колебания, затухающие вследствие внутреннего трения.  [c.87]


Трение скольжения. По состоянию поверхностного слоя различают сухое трение, возникайщее при отсутствии смазки, когда поверхности покрыты менее прочными пленками, чем основной материал граничное трение, когда поверхности покрыты жидкостными пленками настолько малой толщины (0,1 мкм и менее), что они приобретают особые свойства, отличные от объемных свойств жидкости, зависящие от природы и состояния трущихся поверхностей жидкостное трение, когда жидкие пленки имеют толщину более о, 1 мкм и в них проявляются объемные свойства жидкости.  [c.51]

Структурная приспособляемость материалов. При оценке возможностей материала обеспечить необходимые антифрикционные и фрикционные свойства при высокой износостойкости следует в едином комплексе рассматривать все основные, процессы, -происходящие в зоне контакта поверхностей. С этих позиций интересен методический подход проф. Б. И. Костецкого и его сотрудников, которые рассматривают явление так называемой структурной приспособляемости материалов при трении, считая его универсальным и характерным для всех видов изнашивания [128, 1411. Это явление связано с закономерным изменением структуры и свойств поверхностных слоев в энергетически выгодном для данных условий направлении, что приводит к устойчивому динамическому состоянию износостойкости и антифрикционности (или фрикционности) материала.  [c.265]

Поскольку процесс взаимного контактирования микронеровностей двух сопряженных поверхностей носит случайный характер, выявление определенных закономерностей, связанных с изменением состояния поверхностного слоя в процессе фрикционно-контактного воздействия, возможно лишь при обработке достаточного количества экспериментальных данных. Так, было установлено, что частичная релаксация микронапряжений происходит после некоторого (отличного от единицы) числа воздействий, что является подтверждением усталостной природы процесса в смысле необходимости многократного воздействия для нарушения сплошности исследуемого материала — образования микротрещин. Таким образом, среднее для каждой нагрузки расстояние между минимальными значениями ширины линии (220) a-Fe является числом циклов до разрушения по критерию образования микротрещин. Число циклов до разрушения существенно зависит от внешних условий трения. С увеличением нагрузки на иБдентор оно уменьшается (рис. 29).  [c.54]

Характер структурных изменений в более тонких поверхностных слоях исследовался методом измерения микротвердости. Метод измерения микротвердости является аффективным и наиболее распространенным способом оценки состояния поверхностных слоев материалов при трении. При сопоставлении его результатов с результатами других методов исследования, например рентгеновского анализа, следует иметь в виду, что между ними возможно и сходство [87, 88], и различие [24]. Сходство обусловлено тем, что микротвердость, как и ширина дифракционных линий, находится в линейной связи с величиной блоков и микронапряжений. Различие может быть результатом несоответствия толщины слоев, исследуемых обоими методами. Кроме того, при исследовании многофазных материалов возможно различие в ловедении той фазы, которая исследуется рентгенографически, и всего материала в целом, если микротвердость характеризует его среднеагрегатное состояние.  [c.59]

Оценка несущей способности силового фрикционного контакта в машинах производится на основе анализа напряженного и деформированного состояния при помощи методов теории упругости. Систематическое исследование деформации контактирующих упругих тел и напряженного состояния поверхностных и приповерхностных слоев материалов началось с работ Г. Герца. К настоящему времени обстоятельно изучено влияние касательных сил на напряженное и деформированное состояние контакта при различной его геометрии [1, 5, 7, 25, 26, 28, 39]. Касательная нагрузка, силы трения значительно влияют на напряженное состояние в зоне контакта и на характер разрушения материала — глубинное или поверхностное. При малых касательных нагрузках прочность материала определяется глубинными напряжениями, при больших - поверхностными. С ростом касательной нагрузки наиболее напряженная точка перемещается ближе к поверхности. При перекатьгаании тел касательная нагрузка оказывает влияние как на величину, так и на амплитуду изменения компонентов напряжения в поверхностной зоне контакта. Силы трения увеличивают напряжение сдвига в тонком поверхностном слое на отстающих поверхностях и уменьшают их на опережающих, чем и объясняется большая прочность опережающих поверхностей [25, 26].  [c.157]

Л, Б. Эрлих дает такое объяснение природы терморастрескивания. Быстрый нагрев поверхности трения при большом градиенте температуры по глубине вызывает в поверхностном слое напряжения сжатия. Эти напряжения значительно превосходят по абсолютной величине растягивающие напряжения в остальной части детали и обусловливают при определенных условиях неустойчивость упругого или упругопластического состояния этого слоя. Такими условиями является высокий нагрев поверхностного слоя или переход его в пластическое состояние при этом модуль упругости материала принимает малые значения. Этот слой становится подобным сжатой пластине или оболочке из эластичного материала на упругом основании. Неустойчивость исходной формы приводит к образованию гофра. Цилиндрическая поверхность бандажа или барабана превращается в гофрированную, причем выступы и впадины идут параллельно оси. Выступы волнистой поверхности концентрируют нагрузку, происходит их перегрев, они становятся местами подплавле-ния и очагами зарождения трещин.  [c.235]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]

Процесс трения является сложной совокупностью взаимодействия многих факторов, при этом существенная роль принад- лежит процессу пластической деформации. Напряженное состоя нйе Яри трении объемно и неоднородно возникают качественно отличные нарушения правильности кристаллической решетки по сравнению с обычным растяжением или сжатием. Известно, что деформация слоев стали, близких к поверхности трения, при удельной нагрузке 1,5 МПа превышает 25% для достижения деформации такого же уровня для этого материала при статическом сжатии необходимо довести нагрузку до 600—700 МПа. Происходят значительные изменения поверхности трущихся монокристаллов в виде сильного изгиба кристаллической решетки, при этом ось изгиба находится в полной зависимости от направления скольжения. В работе [41 ] отмечено, что упрочнение поверхностных слоев, йвляющееся результатом пластической деформации, при трении достигает значительно больших величин, чем в условиях объемного напряженного состояния. При этом процесс пластического деформирования при трении рассматривают как физикохимический, т. е. процесс, сопровождающийся рядом структурных, физических и физико-химических изменений деформируемого металла.  [c.33]


В работе [6] методом электронографии исследовано состояние кристаллической структуры при фреттинг-коррозии. Показано, что очень тонкие поверхностные слои зоны фактического контакта характеризуются неупорядоченным состоянием материала и весьма мелкодисперсной структурой (размер отдельных блоков когерентного рассеяния менее 10 нм). Авторы полагают, что материал на поверхности трения находится р ам орфном состоянии. Аморфиза-  [c.35]

Явление избирательного переноса при трении является высоко структурно-чувствительным. Условием его реализации является строго определенный процесс перераспределения дислокационной структуры в тончайших поверхностных слоях, а также строго определенный характер диффузионного перераспределения атомов контактирующих металлических систем. Выявление условий протекания этих процессов в субмикроскопическом масштабе, установление их взаимосвязи на базе имеющегося достаточно обширного экспериментального и теоретического материала по объемному" пластическому деформированию твердых растворов замещения позволит вскрыть один из основных путей достижения такого структурного состояния в зоне взаимодействия твердых тел, которое обеспечивает практическую безызносность.  [c.203]

При работе зубчатой передачи между зубьями сопряженных зубчатых колес возникает сила давления f рис. 12.15), направленная по линии зацепления. Кроме того, от скольжения зубьев между ними образуется сила трения = где / — коэффициент трения. Сила невелика по сравнению с силой Р, поэтому при выводе расчетных формул ее не учитывают, т. е. принимают, что сила взаимодействия между ЗЫБЯМИ направлена по нормали к их профилям. Под действием силы F и F зубья находятся в сложном напряженном состоянии. На их работоспособность оказывают влияние напряжения изгиба в поперечных сечениях зубьев и контактные напряжения Стд в поверхностных слоях зубьев. Оба эти напряжения, переменные во времени, и могут бьггь причиной усталостного разрушения зубьев или их рабочих поверхностей. Напряжения изгиба Tf вызывают поломку зубьев, а контактные напряжения Он — усталостное выкрашивание поверхностных слоев зубьев. Поломка зубьев — опасный вид разрушения, так как при этом может выйти из строя не только зубчатая передача, но и валы и подшипники из-за попадания в них отколовшихся кусков зубьев. Поломка зубьев возникает в результате больших нагрузок, в особенности ударного действия, и многократных повторных нагрузок, вызывающих усталость материала зубьев. Во избежание поломки зубьев их рассчитывают на изгиб. Усталостное выкрашивание поверхностных слоев зубьев — распространенный и опасный вид разрушения большинства закрытых и хорошо смазываемых зубчатых передач. Выкрашивание заключается в том, что при больших контактных напряжениях на рабочей поверхности зубьев обычно на ножках, вблизи полюсной линии) появляются усталостные трещины. Это приводит к выкрашиванию мелких частиц материала зубьев и образованию небольших осповидных углублений, которые затем под влиянием давления масла, вдавливаемого с большой силой сопряженным зубом в образовавшиеся углубления и трещины, растут и превращаются в раковины. Для предотвращения выкрашивания зубьев их рассчитывают на контактную прочность.  [c.181]

На фиг. 99 и 100—105 (см. вклейки, листы 19—22) представлены фотографии зоны трения быстрорежущей стали Р18при обработке сталей 10 и 40 в условиях вязкого разрушения режущей кромки. На снимках отчетливо виден случай течения поверхностных слоев инструмента как по задней, так и по передней поверхностям. Толщина текущего по задней поверхности слоя инструмента равна 0,04—0,06 мм. На фиг. 100 зафиксирован момент течения материала инструмента по задней поверхности и начальный момент отделени частицы материала инструмента от его тела. Обработанная поверхность, схватившись с материалом инструмента при выходе из контакта с задней поверхностью, увлекает с собой частицу материала инструмента. Итак, режущая кромка, придя по задней поверхности в состояние течения, создает условия для периодического среза материала инструмента, в результате чего инструмент вскоре теряет способность снимать стружку.  [c.122]


Смотреть страницы где упоминается термин Состояние материала поверхностного слоя при трении : [c.67]    [c.115]    [c.286]    [c.179]    [c.204]    [c.101]    [c.13]    [c.60]    [c.111]    [c.46]    [c.30]   
Смотреть главы в:

Энергетика трения и износа деталей машин  -> Состояние материала поверхностного слоя при трении



ПОИСК



Поверхностные состояния

Слой поверхностный

Слой трения

Состояние материала

Состояние слоев



© 2025 Mash-xxl.info Реклама на сайте