Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активное состояние

Предложено много теорий пассивности металлов. Это связано с трудностью объяснения всей сложной совокупности явлений, происходящих при переходе металлов из активного состояния в пассивное и обратно.  [c.306]

Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами d-уровней, что переводит его в активное состояние.  [c.309]


Активное состояние Пассивное состояние Состояние перепассивации  [c.313]

По В. П. Батракову (1962 г.), интенсивной линейной локализованной коррозии вследствие приложенных извне или внутренних напряжений подвержены границы зерен или блочных структур, своеобразные группировки атомов по кристаллографическим плоскостям, дислокации и другие искажения кристаллической решетки, находящиеся в активном состоянии.  [c.335]

Таким образом, для основного металла при его коррозии в обычных условиях (растворении в активном состоянии) катодные контакты могут быть опасными, а анодные — защитными.  [c.358]

Так, потенциал железа, который в активном состоянии около —0,4 в, в пассивном состоянии возрастает до 4-1 а.  [c.61]

Запассивированный металл теряет некоторые свои свойства, которыми он обладает в активном состоянии так, запассивированное железо не вытесняет медь из раствора медных солей это происходит вследствие сдвига потенциала пассивированной поверхности в положительную сторону.  [c.61]

Развитие коррозионного процесса можно фиксировать фотографированием. В последние годы для качественной оценки коррозионного процесса привлечен и способ микрокиносъемки. Применение последнего способа позволяет исследовать кинетику коррозионного процесса, диффузионные явления, возникновение пассивности металлов, переход металлов в активное состояние, развитие коррозионных трещин и других сложных яв.леиий. Способ микроскопического исследования позволяет использовать, возможности убыстренной и замедленной съемки.  [c.335]

Для уменьшения сложности этого этапа целесообразно либо использовать косвенные критерии предпочтения вариантов, либо искать оценки варианта структуры без исследования громоздких математических моделей. При таком подходе вводят параметр, характеризующий качество объекта. Это может быть число элементов в объекте, его стоимость, занимаемый объем, максимальное число элементов, находящихся в активном состоянии (мощность), вероятность выхода из строя, максимальная длина проводников (в задачах размещения и трассировки) и т. д.  [c.307]

Заметим, что в электрохимическом ряду некоторые металлы занимают два положения, в зависимости от того, активны они или пассивны, а в ряду напряжений помещены металлы только в активном состоянии,так как только в этом состоянии достигается истинное равновесие. Напротив, пассивное состояние металла неравновесно, потому что поверхностная пленка не допускает нормального равновесия металла со своими ионами. Хотя существует только один ряд напряжений, очевидно, что электро сими-ческих рядов может быть несколько из-за различных свойств разных сред, а также различных склонностей металлов образовывать поверхностные пленки. Короче говоря, для каждой среды существует специфический электрохимический ряд, а относительное положение металлов в этих рядах может меняться в зависимости от среды.  [c.42]


Для анодной защиты, в отличие от катодной, характерно, 4to скорость коррозии, хоть и мала, однако не падает до нуля. С другой стороны, в агрессивных кислотах необходима значительно более низкая плотность тока, чем при катодной защите, когда она не может быть ниже эквивалентной скорости саморастворения в той же среде. Для нержавеющих сталей защитная плотность тока отвечает довольно высокой скорости коррозии сплавов в активном состоянии.  [c.230]

Типы диалога. Диалог подразумевает наличие двух участников человека и ЭВМ. Каждый из них может находиться либо в активном, либо в пассивном состоянии. Участник будет находиться в активном состоянии, если он выполняет действие по анализу полученного сообщения и формированию нового, и в пассивном состоянии, если не предпринимает никаких действий в ожидании сообщения. В диалоговом взаимодействии ситуация, когда оба участника диалога находятся в пассивном состоянии, является тупиковой, поскольку из нее невозможно выйти, опираясь лишь на средства ведения диалога.  [c.108]

Во время полета корабля Союз-3 ожидался высокий уро- вень солнечной активности. Однако постоянный контроль всех проявлений солнечной активности, состояния геомагнитного поля и уровней радиации в околоземном космосе и в стратосфере в приполярных областях позволил принять решение о возможности выполнения полета в намеченные сроки.  [c.283]

Небольшая доля дырок, движущихся от эмиттера к коллектору (1—5%), встречает на своем пути через базу электроны и рекомбинирует с ними. Убыль электронов в базе за счет рекомбинации восполняется приходом электронов через базовый вывод. Таким образом, ток, протекающий через эмиттерный вывод транзистора в активном состоянии 1 , оказывается равным сумме токов, протекающих через его коллекторный и базовый выводы  [c.160]

Соотношение между токами коллектора и базы транзистора в активном состоянии определяется условиями диффузии и  [c.160]

Связь состояний — логическое соединение двух функций интерфейса, где переход в активное состояние одной функции интерфейса зависит от наличия оговоренного активного состояния другой функции интерфейса.  [c.192]

Для каждого состояния функции интерфейса оговариваются только многолинейные сообщения, посылаемые истинными. При активном состоянии функции все неоговоренные многолинейные сообщения посылаются пассивными (ложными). По ГОСТ  [c.192]

При исследовании поведения материалов, которые могут находиться в пассивном или активном состояниях в исследуемых средах, предпочтение отдают исходной поверхности образцов в активном состоянии, так как это дает возможность определить скорость коррозионного процесса в условиях активного растворения или наблюдать переход в пассивное состояние. При сравнительных испытаниях большого числа образцов различных материалов поверхности образцов лучше обрабатывать одним способом. При этом поверхность образцов защищают наждачной бумагой № 3 до получения однородной поверхности, а затем карандашной резинкой. После этого образцы промывают в ацетоне или спирте для удаления следов грязи или жира, которые могут препятствовать равномерному контакту поверхности образцов со средой.  [c.81]

При создании условий, когда плотность анодного тока на свежеобразованной поверхности близка к плотности, которая была после разрыва оксидной пленки (т.е. металл находится в активном состоянии, и защитная пленка или не растет, или постоянно пробивается), происходит электрохимическое и химическое растворение активного металла. На величину электродного потенциала и плотность анодного тока влияют химическая и структурная неоднородность металла и появление локаль-  [c.60]

Потенциометрический метод имеет преимущество перед гальвано-статическим, так как позволяет изучить зависимость скорости растворения от потенциала в широкой области, в том числе в области, соответствующей переходу металла из активного состояния в пассивное и наоборот. Гальваностатический метод этим свойством не обладает.  [c.139]

По мере увеличения плотности тока I = (3 + 5) 10" А/см периодические колебания потенциала на кривых заряжения также наблюдаются, однако электрод более длительное время находится в активном состоянии, о чем свидетельствует появление длинных горизонтальных участков на кривых, располагающихся в менее положительной области потенциалов, а также исчезновение в интервале определенного времени периодических колебаний потенциала (см. рис. 64, б, в).  [c.188]


Анализируя анодную поляризационную кривую (см. рис. 4), можно отметить четыре основных состояния металла. Область I соответствует активному состоянию, т. е. состоянию, в котором растворение металла подчиняется законам электрохимической кинетики и может быть описано уравнением Тафеля  [c.25]

При Гре < V,, п ( 1Г. II —потенциал полной пассивности) железо активно и переходит в раствор в виде ионов Fe +. mHaO, при Vre>Vr,,n железо пассивно и переходит в раствор в виде ионов Fe ь./лНзО со скоростью, на несколько порядков меньше, чем в активном состоянии (i = 7-10 А/см ). При достаточно высоких значениях потенциала Vpe > (Vo,)o6p в области возрастающей плотности тока начинается электролитическое выделение кислорода по реакции  [c.305]

При изменении внешних условий пассивный металл может вновь перейти в активное состояние. Этот процесс называют активацией, или депассивацией. Вещества или процессы, нарушающие пассивное состояние металлов или затрудняющие наступление пассивности, называют активаторами или депассиваторами.  [c.306]

Кривая (Ум )обр AB на рис. 216 соответствует логарифмической (тафелевской) зависимости V от г а при растворении металла в активном состоянии по уравнению (271). Точка В соответствует 1/адс или Уме о,пп,2 нзчалу здсорбции кислорода или образованию защитной пленки, что приводит к дополнительной поляризации процесса и отклонению поляризационной кривой от простой логарифмической зависимости.  [c.315]

Из рис. 216 следует, что если полностью запассивированный металл катодно заполяризовать до потенциала, отрицательнее Vn. п металл переходит в активное состояние. Эта активация металла может быть обусловлена а) подщелачиванием электролита у поверхности металла при катодной поляризации, приводящим к растворению защитной окисной пленки AljOg б) катодным восстановлением окисных пленок (на Си, Ni, Fe) в) механическим разрушением защитной пленки, выделяющимся при катодной поляризации газообразным водородом.  [c.320]

I — область активного состояния Л — область частичной запассивированности III — область пассивного состояния IV — область  [c.458]

В активном состоянии металлы поляризуются аиодно сравнительно слабо, что видно из пологого хода начального участка АБ анодной поляризационной кривой (рис. 14). На участке кривой АБ протекает процесс активного растворения металла с незначительным смещением потенциала в положительном иаправ-  [c.34]

Переход поверхности металла в активное состояние облегчается, если в растворе присутствуют некоторые анионы. К числу шльных активаторов в порядке их способности к депассивации относятся С1 > Вг > 3 . Особенно часто в растворах встречается хлор-ион. Его активирующее действие проявляется как 3 кислотах, так и в нейтральных или щелочных растворах. Характерным является то, что в присутствии. хлор-попа растворение металла часто идет не по всей поверхности, а толь1<о па отде 1Ы1Ы. участках (точечная 1чир )0.зия).  [c.61]

При изменении внешних условий пассивный металл мохет вновь перейти в активное состояние. Этот процесс называют депассива-цией или активацией, а вещества или процессы, способствующие наруше1шю пассивного состояния,называют депассиваторами или активаторами.  [c.39]

Высокая концентрация ионов С1 и низкое значение pH поддерживает питтинг в активном состоянии. В то же время высокая плотность растворов, содержащих продукты коррозии, обусловливает их вытекание из питтинга под действием силы тяжести. При контакте этих продуктов с поверхностью сплава пассивность в этих местах нарушается. Это явление объясняет часто наблюдаемую на практике форму питтинга, удлиненную в направлении действия силы тяжести (течения продуктов коррозии). На пластинке нержавеющей стали 18-8 после выдержки в морской воде в течение 1 года была обнаружена узкая бороздка, протянувшаяся на 6,35 см от начальной точки (рис. 18, 5, а). Возникновение коррозионных разрушений такого типа было воспроизведено в лабораторных условиях [43]. По поверхности образца стали 18-8, полностью погруженного в раствор Fe la и немного отклоненного от вертикали, постоянно пропускали слабую струю концентрированного раствора Fe lj. Через несколько часов под струей раствора Fe Ia образовывалась глубокая канавка (рис. 18.5, Ь). На поверхности железа подобная канавка не образуется, так как на нем не возникает активно-пассивный элемент.  [c.313]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]


Если оба уча( тннка диалога одновременно находятся в активном состоянии, то такой диалог называют асинхронным (в асинхронном диалоге человек имеет возможность в любой момент времени вмешаться в ход выполнения машинной процедуры с целью ее приостановления или внесения изменений). Асинхрон 1Ый диалог распространен в прилож ении к имитационным моделям, оптимизационным процедурам, организации вычислительного процесса. В этом случае человеку со стороны ЭВМ постоянно поставляются на экран дисплея сообщения о текущем состоянии машинной процедуры. Человек, как и ЭВМ, находится в активном состоянии и при необходимости прерывает активность ЭВМ, переводя ее в пассивное состояние.  [c.108]

При защите металлов анодной поляризацией имеются некоторые особенности, присущие лишь этому методу. Так, если среда не очень агрессивна, на поверхности металла обычно сохраняется воздушночзкисная плёнка. В этом случае поверхность металла сразу после заполнения может быстро запассиви-роваться и запуск установки не вызовет затруднений. Если же электролит отличается высокой агрессивностью и металл сразу после заполнения аппарата оказывается в активном состоянии, начальная пассивация (переход максимума анодной поляризационной кривой / ) требует весьма больших плотностей тока, достигающих 100. .. 200 А/м Запассивировать pa-jy всю поверхность аппарата бывает невозможно требуется специальный мощный источник тока.  [c.86]

В рассматриваемых реакциях вследствие пирогидролиза хлористого титана происходит образование соляной кислоты, которая поддерживает в активном состоянии поверхность титана в местах разрушения окисной пленки, способствует процессам локального растворения и насыщения металла водородом. Чем больше химическая гетерогенность металла, тем более интенсивно протекают процессы локального растворения и тем активнее происходит насыщение металла водородом. При этом следует иметь в виду, что склонность к водородной хрупкости при нагружении металла в области температур 250—500°С существенно отличается от хрупкости при 20°С. При температурах горячесолёвого растрескивания выделения гидридов, по-видимому, не происходит из-за очень высокой растворимости водорода в металле, и сами гидриды не могут проявить хрупкость при данных температурах. Водородная хрупкость в этом интервале температур возможна лишь при сравнительно высоких концентрациях водорода как обратимая водородная хрупкость, связанная с повышенной концентрацией водорода на границах зерен. Эта концентрация способствует возникновению локального вязкого течения и соответственно охрупчиванию металла.  [c.77]

Спад потенциала на этих участках кривой (смещение в отрицательную сторону) является результатом возникновения на электроде активного центра (иногда нескольких), а длина горизонтального участка характеризует время нахождения питтинга в активном состоянии. Со временем питтинг может запааивироваться, что вызывает немедленное смещение потенциала в положительном направлении. При этом электрод снова может находиться на границе активно-пассивного состояния, на что указывают возобновляющиеся периодические колебания потенциала.  [c.188]

Я. М. Колотыркин и Г. М. Флорианович [21] впервые предложили использовать кислород для снижения скорости коррозии сталей в воде при высоких температурах. Авторы работы [22] теоретически обосновали метод кислородной защиты . Они показали, что если в отсутствие кислорода в агрессивнй среде или при недостаточной его концентрации сталь находится в активном состоянии, то перевести ее в пассивное состояние можно, введя в среду кислород повышенной концентрации. Последнее возможно, в частности, путем применения кислорода при повышенном давлении.  [c.46]


Смотреть страницы где упоминается термин Активное состояние : [c.248]    [c.61]    [c.161]    [c.138]    [c.73]    [c.13]    [c.85]    [c.77]    [c.82]    [c.70]    [c.82]    [c.115]    [c.189]    [c.26]   
Смотреть главы в:

Пассивность и защита металлов от коррозии  -> Активное состояние


Коррозия и защита от коррозии (2002) -- [ c.93 ]



ПОИСК



Активность и коэффициент активности состояния

Бернулли при адиабатическом процессе реальные 87 — Коэффициент активности — Зависимость от приведенных давлений и температуры Графики 89 —Уравнение состояния

Гомогенные сплавы (активное состояние)

Закономерности растворения металлов в активном состоянии

Межфазный перенос одного химически активного вещества. Полные коэффициенты массопроводимости Задачи с неравновесными S- и L- состояниями

Металл активно-пассивное состояние

Механизм анодного растворения металлов в активном состоянии

Напряженное состояние активных элементов преобразователей

Нержавеющая активное состояние

Область активного состояния

Пассивно-активное состояние

Растворение металла в активном состояни

Состояние пластическое активное



© 2025 Mash-xxl.info Реклама на сайте