Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Период решетки кристаллической

Размеры кристаллической решетки характеризуются пара метрами, или периодами решетки. Кубическую решетку опреде ляет один параметр — длина ребра куба а (см. рис. 4,а, б) Параметры имеют величины порядка атомных размеров и из меняются в ангстремах.  [c.24]

В таблице 1.1 представлены различные кристаллические структуры некоторых элементов и параметры, описывающие кристаллическую структуру число атомов, приходящееся на элементарную ячейку, периоды решетки и расстояние между ближайшими соседями.  [c.52]


Электрические свойства. По электропроводности аморфные металлы ближе к жидким металлам, чем к кристаллическим. Удельное сопротивление р аморфных металлических сплавов при комнатной температуре составляет (1—2) 10- Ом-см, что в 2—3 раза превышает р соответствующих кристаллических сплавов. Это связано с особенностями зонной структуры аморфных металлов. В кристаллических металлах длина свободного пробега электрона составляет примерно 50 периодов решетки даже при Т, близкой к температуре плавления. Отсутствие дальнего порядка в металлических стеклах обусловливает малую длину свободного пробега, соизмеримую с межатомным расстоянием. Следствием этого является повышенное удельное сопротивление и слабая зависимость его от температуры.  [c.373]

Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр - длина ребра куба (рис. 5 а, б).  [c.17]

Первая группа элементов при легировании никеля образует твердый раствор замещения до тех пор, пока период кристаллической решетки не достигнет 0,370 - 0,388 нм. Дальнейшее легирование элементами Сг, Мо, W приводит к образованию в структуре сплава интерметаллидных соединений - плотно упакованных фаз, присутствие которых, как правило, снижает механические свойства, Следовательно, количество элементов первой группы должно быть таким, чтобы период решетки никелевого твердого раствора не превысил указанных значений. При этом прочностные характеристики однофазных сплавов в литом состоянии следующие <7в = 588 МПа a-j = 294 МПа. Период решетки твердого раствора на основе никеля при легировании изменяется по уравнению п  [c.411]

Линейные несовершенства кристаллической решетки называются дислокациями. Дислокации можно представить таким образом если надрезать идеальный кристалл и сместить края надреза на величину, кратную периоду решетки, то внутри кристалла у края надреза возникнет некоторое искажение, которое и является дислокацией.  [c.10]

Упругая деформация после снятия вызвавшей ее силы полностью исчезает, и все размеры изделия (образца), как продольные, так и поперечные, остаются без изменения. При этом не изменяется и взаимное положение атомов в кристаллической решетке. Объясняется это тем, что вызванные внешней силой временные изменения расстояний между атомами, равных периоду решетки, а также смещения соседних атомов относительно друг друга, приводящие к искажению решетки, устраняются благодаря обусловленному металлической связью межатомному взаимодействию.  [c.15]


Кристаллическая структура и период решетки  [c.514]

Кристаллические решетки люминофоров имеют дефекты, расстояния между которыми исчисляются несколькими периодами решетки. Поэтому можно считать, что этим дефектам соответствуют локальные уровни электронных состояний, расположенные в запрещенной зоне.  [c.199]

С другой стороны, проведенные исследования показали, что период кристаллической решетки медной пленки, сформировавшейся на поверхности, составляет в среднем 3,54 А при теоретическом значении 3,615 А. Такое падение периода решетки меди связано с накоплением высокой плотности (—10 ат/см ) точечных дефектов (вакансий) в пленке меди, на два—три порядка превышающих число вакансий при обычных условиях нагрева и деформации меди (10 —10 ат/см= ).  [c.25]

Период решетки (а) в А Кристаллическая структура белого олова ( 5)  [c.251]

Линейные или краевые дислокации показаны на рис. 4. Образование дислокации данного вида можно рассматривать как обрыв ряда атомов на участке кристаллической решетки или как внедрение в решетку экстраплоскости на ограниченном участке. Линия краевой дислокации располагается перпендикулярно вектору сдвига. В месте обрыва плоскости происходит упругое искажение решетки, простирающееся на несколько межатомных расстояний или периодов решетки. Протяженность самой дислокации в одном направлении может достигать значительной величины — до стенки соседнего блока, включения, субзерна или границы зерна.  [c.37]

Кристаллическая решетка а-железа — объемно центрированный куб с периодом решетки 0,28606 нм. До температуры 768 °С а-железо магнитно (ферромагнитно). Температуру 768 °С, соответствующую магнитному превращению, т. е. переходу из ферромагнитного состояния в парамагнитное, называют точкой Кюри и обозначают А .  [c.118]

Кристаллическая решетка Т а и < 882 Q. . ОЦК (К8) Период решетки при 20°С  [c.291]

Кристаллическая решетка Tip (t> 882 О. . ray (Г12) Периоды решетки при 900 С, нм  [c.291]

В этой книге мы не будем останавливаться ни на деталях эксперимента, ни на теории, лежащей в основе определения рентгеновским методом кристаллических структур или периодов решетки. Читатели могут найти данные по этому вопросу в специальной литературе [132—134].  [c.251]

Раствор твердый — однофазный в твердом состоянии сплав, в котором соотношение компонент может быть переменным и один из компонентов (растворитель) сохраняет свою кристаллическую решетку, а атомы другого (или других) компонента располагаются в решетке этого компонента, изменяя ее размеры (периоды решетки).  [c.196]

Приведем расчет энергии взаимодействия пары атомов металла и взаимодействия таких же атомов в решетке. Например, для лития энергия связи в молекуле /=1,14 эВ. равновесное межатомное расстояние гравн. 2,7 А. Для кристаллической решетки энергия решетки 11=1,1 эВ, равновесное расстояние между атомами составляет 3,03 А и, формально, при координационном числе к.ч.=12 энергия межатомной связи в решетке равна 0,14 эВ, Таким образом, при ослаблении межатомных связей в кристагше наблюдается выигрыш в энергии кристаллической решетки. Поскольку в пористой части переходного слоя растягивающие напряжения обусловливают увеличение периода решетки (расстояния между атомами), то энергия данной зоны имеет еще большее значение по сравнению с энергией объемной кристаллической решетки, что вносит вклад в интегральную величину поверхностной энергии.  [c.120]

Образование интерференционной картины было интерпретировано следующим образом вещество имеет атомное строение, атомы образук т пространственную строго упорядоченную пространственную решетку с определенным значением периода решетки, характерного для данного вещества. Когда длина волны рентгеновского излучения совпадает с параметром решетки, возникает интерференционная картина. Оказалось, что практически для всех твердых тсл можно бьию обнаружить у-частки со строго упорядоченной интерференционной картиной [87], тогда как в газах, жидкостях и стеклах такую упорядоченность обнаружить не удалось. В связи с этим возникло разделение вещества на упорядоченное или кристаллическое и неупорядоченное или аморфное.  [c.192]


В связи с обсуждением топологических свойств особенностей в нематиках остановимся кратко на топологическом истолковании дислокаций — особых линий в кристаллических решетках. Представим себе неограниченную кристаллическую решетку и введем оси х , 2, Ха, направленные вдоль трех основных периодов решетки величины этих периодов пусть будут Oj, о. Энергия решетки не меняется при ее параллельных сдвигах на любые расстояния вдоль осей Xi, J j, х . Области изменения параметров вырождения (величин сдвигов) — отрезки длины а,, а , Oj, причем у каждого отрезка обе его концевые точки рассматриваются-как  [c.207]

Упрочнение сплава и снижение пластичности при упорядочении происходят из-за торможения дислокаций вследствие образования антифазных границ. При упорядочении происходит искажение матричной кристаллической структуры. Например, при упорядочении в системе Аи—Си упорядоченные объемы обладают тетрагональной г. ц. к. решеткой по сравнению с г. ц. к. решеткой матрицы. Возникающие при этом напряжения дополнительно тормозят движение дислокаций. В том случае, когда решетки матрицы и сверхструктуры одинаковы, напряжения могут возникать вследствие изменений только в периодах решетки неупорядоченных и упорядоченных объемов (FeNia в системе Fe—Ni).  [c.494]

Размеры кристаллической решетки характеризуются параметрами или периодами решетки. Расстояние между центрами соседних атомов измеряется ангстремами м), килоиксами (1кХ=1,00202 А ), наномет-  [c.5]

Как известно [75, 76], пластическая деформация материалов приводит к значительному увеличению плотности таких дефектов, как дислокации (или их скопления), дефекты упаковки, вакансии (или нх комплексы), междоузельные атомы и т.д. Поля искажений этих дефектов кристаллического строения вызывают смещения атомов из узлов, что приводит к упругим микродеформациям. Если размер блоков достаточно мал (-10" см), это приводит к заметному расширению дифракционных пиков на дифрактограммс. Наличие в поликристал-лическом образце микроискажений (т.е. присутствие кристаллов с вариацией периода решетки) также приводит к расширению пиков на дифрактограмме. В настояи ,ее время развит1)1 три метода (аппроксимации или интегральной ширины, гармонический анализ формы рентгеновских линий, метод моментов), основанные на анализе формы дифракционных линий, с помощью которых могут быть найдены размеры блоков и величина микродеформаций в случае их раздельного и совместного присутствия в исследуемом образце. Зачастую имеется однозначная связь между величиной микродеформаций и плотностью хаотически распределенных дислокаций.  [c.160]

Обработка образцов велась излучением лазера на неодимовом стекле с энергией импульса 9 Дж и длительностью 4 мс. При этом каждый локальный участок поверхности облучался различным количеством импульсов — от одного до пятнадцати. В результате воздействия лазерного излучения в техническом железе образовались зоны, отличающиеся по своим свойствам от исходного а-железа. Средняя глубина проникновения молибдена в матрицу составляет 450—500 мкм. При рассмотрении микрошлифов образцов обнаруживается четкая, неразмытая граница между зоной воздействия лазерного излучения и основным металлом. Данные измерения микротвердости зоны по ее глубине и в поперечном сечении на расстоянии от поверхности 200 мкм свидетельствуют о ее повышении в обработанной области в 1,5 раза по сравнению с микротвердостью а-железа. Результаты дюрометрического исследования показывают, что микротвердость по всей зоне воздействия излучения почти одинаковая, некоторое повышение ее наблюдается у нижней границы зоны. Повышение микротвердости и ее однородное распределение по всей области позволяют предположить наличие твердого раствора молибдена в а-железе. Рентгеноструктурный анализ показал наличие в обработанной зоне двухфазной структуры, которая имеет ОЦК решетки с различными периодами. Одна из них относится к а-железу, а вторая соответствует твердому раствору молибдена в а-железе с увеличенным межплоскостным расстоянием по сравнению с этим расстоянием в матрице. Вследствие того, что при растворении молибдена увеличиваются размеры кристаллической решетки железа, при точном измерении периода решетки можно определить содержание легирующего элемента в твердом растворе. Причем известно, что 1 % по массе молибдена увеличивает период решетки на 0,002 А.  [c.27]

Поскольку хром и молибден имеют одинаковую кристаллическую решетку и образуют твевдый раствор амещения, можно воспользоваться правилом 5еггарда (линейная зависимость периода решетки от концентрации легирующего элемента) и рассчитать максимальную концентрацию молибдена в поверхностном слое хромового покрытия ,полученном при плотности тока 0,04 а/см и продолжительности электролиза 30 мин.  [c.35]

Ниже приведены таблицы, помогающие выбирать условия съемки при определении состава твердых растворов по изменению периодов кристаллической решетки. В табл. 15 указаны длины волн и их функции для различных излучений, в табл. 16 — рекомендуемые излучения и усломя съемки при определении периодов решетки различных материалов [1, 3, 8].  [c.76]

Индексы направлений. Для определения индексов направлений расположения рядов атомов в кристаллической решетке необходимо из семейства параллельных плоскостей выбрать направление плоскостей, проходящих через начало координат. Далее, приняв за единицу длину ребра элементарной ячейки (или период решетки), определяют координаты любой точки этого направления. Полученные значения координат точки приводят к отношению трех наименьших чисел. Эти числа, заключенные в квадратные скобки luvw], являются индексами данного направления и всех параллельных ему направлений, Основные направления в кубической решетке приведены на рис, 8, г. Индексы осей решетки х— [100], у [010] иг— [001]. Индексы пространственной диагонали [111]. Для кубической решетки индексы направлений [uvw, перпендикулярных к плоскости (hkl), численно равны индексам этой плоскости. Например, индексы оси X равны [100], а индексы плоскости, перпендикулярной к оси х, равлы (100).  [c.16]


Реализация этих механизмов зависит от многих факторов — сопряжения периодов кристаллических решеток пленки и подложки, уровня диффузионных процессов и взаимной растворимости в этой паре, условий эксперимента и т.д. Для гетероэпитак-сиальных систем, согласованных по периодам решетки, оценить в первом приближении предпочтительность того или иного механизма можно из термодинамических соображений. Слоевое зарождение пленки (т.е. осуществление второго механизма) происходит, если выполняется соотношение  [c.138]

Кристаллическая решетка Период решетки, нм-Минимальное расстояние между атх)-ыамн, нм Плотность, т/м теоретическая пикнометрическая Теплостойкость, °С Микротвердость по Кнуппу, МПа Режущая способность при шлифова-ннн корунда порошком зернистостью 10/7  [c.138]

Низкотемпературные решеточные свойства A1N рассмотрены в [27]. В [28] обнаружено относительное уменьшение величины периода кристаллической решетки нитрида алюминия (до 0,9%) в ультрадисперсных порошках с размерами частиц до 50 нм. Для смеси ультрадисперсных порошков период решетки может уменьшаться под влиянием давления Лапласа или увеличиваться благодаря переходу смеси в состояние со смешанной решеткой. Уль-традисперсные порошки, синтезированные плазмохимическим методом, кристаллизуются в высокотемпературных модификациях (с максимально компактной решеткой), которые имеют минимальную свободную поверхностную энергию.  [c.7]

При осаждении покрытия из карбида титана на твердые сплавы системы W —Ti - o уменьшаются период решетки карбида титана, содержание связанного углерода в Ti и увеличиваются остаточные напряжения в карбиде титана, несмотря на однотипность кристаллических решеток твердого раствора (Ti, W) и Ti . Уменьшение степени совершенства решетки осалэдаемого карбида титана, по-видимому, происходит вследствие возникающих сильных искажений и напряжений в зе 1ах твердого раствора (Ti, W) и на границах Ti - (Ti , W) в результате внедрения,имеющего меньший ионный радиус, чем титан, вольфрама. В свою очередь тантал оказьшает противоположное влияние, поэтому наилучшие результаты при испытаниях твердых сплавов различных марок с покрытиями из карбида титана получены для сплава ТТ10К8Б [189].  [c.144]

Влияние внешних сил на мартенситное превращение не ограничивается только простым смещением температуры превращения. На рис. 1.29 показаны кривые напряжение — деформация при растяжении монокри-сталлических образцов из сплава, % (по массе) Си—14,0А1—4,2Ni при разных температурах испытания в направлении приблизительно <001) исходной фазы. Характерной особенностью является то, что в зависимости от температуры испытаний кривые состоят из двух или большего числа ступеней. Методами нейтронографического и рентге-ноструктурного анализов при воздействии напряжений установлено, что каждая стадия обусловлена мартенситным превращением, отмеченным на рисунке. Указанные на этом рисунке фазы у, P i. и ai — это мартенсит, имеющий кристаллическую структуру, показанную на рис. 1.30, (6—(3). Периоды решетки каждой из этих фаз приведены [17] ниже  [c.50]

Результаты большого числа исследований согласуются в том, что исходная фаза в сплавах Т1—N1 имеет о.ц.к. структуру В2 типа СзС1 (эо = = 0,301—0,302 нм). Для кристаллической структуры мартенситной фазы исследователи предложили разные модели. По результатам рентгеновского дифракционного анализа и анализа методом электронной микродифракции абсолютные величины периодов решетки заметно различаются. Однако в результате исследований получено совпадение в том, что  [c.58]

Модель этой структуры показана на рис. 2.1. Она показывает, каким образом орторомбическая слоистая структура типа N24 становится искаженной моноклинной структурой. Моноклинные искажения решетки в этом случае отличаются от искажений кристаллической структуры мартенситной фазы в сплавах Си—Еп. Направление однородного сдвига, в результате которого орторомбическая решетка деформируется в моноклинную, не является параллельным направлению перетасовки базисных плоскостей, а ортогонально ему. С помощью этой модели можно достаточно хорошо объяснить результаты исследований методом электронной микродифракции. Недостаток модели состоит в том, что с ее помощью невозможно объяснить существование отражения 001, четко обнаруживаемого на рентгенограммах. Ооцука [1] принял, что период решетки 0,4622 нм соответствует оси с мартенситной фазы. Основанием для этого явилось обнаружение интенсивного рефлекса в направлении оси с на картине микродифракции электронов. Кроме того, и на изображении, полученном с помощью ПЭМ, наблюдается большое число тяжей в направлении, перпендикулярном оси с, что подтверждает сделанный вывод. В этом случае наблюдаемая картина объясняется существованием дефектов упаковки в базисной плоскости.  [c.59]

Позже Михал [4] повторно исследовал расположение атомов, используя результаты рентгеновского дифракционного анализа порошковых рентгенограмм методом Вонга. Он предложил сложную модель кристаллической структуры, включающую и перетасовку базисных плоскостей. Ниже приведены данные Ооцука, Хегемана и Михала для периодов решетки и положений атомов в структуре  [c.59]

Рентгеновское исследование металлов можно проводить на монокристаллах или поликристаллических образцах. Для работы над диаграммами состояния монокристаллы применяются редко, хотя они часто бывают нужны дл я определения кристаллической структуры. В большинстве случаев работа над диаграммами состояния проводится на порошковых образцах, приготовленных шлифовкой хрупкого сплава или опиловкой вязкого образца. При работе методом Дебая-Шерера (рис. 134) из опилок приготовляют цилиндрический образец диаметром 0,3—1,0 мм. Оптимальная его толщина зависит от природы сплава и целей исследования. Для точного определения периода решетки образец должен быть тонким. Низкая рассеивающая способность легких элементов приводит к тому, что в этом случае лучше применять значительно бол1ве толстые образцы.  [c.251]

Кристаллическая решетка а-железа объемно-центрированная кубическая с периодом решетки 0,286 нм. До температуры 768°С железо ферромагнитно. Температуру 768°С, соответствующую переходу а-железа из ферромагнитного состояния в парамагнитное, называкуг точкой Кюри. Кристаллическая решетка у-железа гранецентрированная кубическая.  [c.217]

Недостаточно определенными остаются представления о размерах границ зерен. Принимая во внимание, что на границе зерна действуют те же межатомные силы, что и в кристаллической решетке, и, учитывая сферу действия межатомных сил, считают, что ширина границы составляет несколько периодов решетки часто принимают ее равной 3—5 10 см. Экспериментально, с помощью автоионной микроскопии, получена примерно такая же величина.  [c.76]

Краевую дислокацию в кристалле можно представить и другим путем. Предположим, что верхняя часть кристалла, состоящего из кубов, отвечающих элементарным ячейкам его атомно-кристаллической решетки (фиг. 10, в), содержит на одну атомную плоскость rj больше, чем нижняя часть кристалла. Тогда такая полуплоскость (AB D) является лишней. Искаженная область у края этой лишней полуплоскости AD) называется краевой или линейной дислокацией, которая обозначена значком j. Кристаллическая решетка вокруг дислокации упруго искажена и является областью концентрации напряжения образование такой области требует значительной затраты энергии. Однако если дислокация уже образовалась, то перемещается она сравнительно легко. Наиболее искаженная часть решетки вблизи AD является центром или ядром дислокации, ее ширина простирается йсего на два — пять периодов решетки, т. е. межатомных расстояний. Линия AD называется осью дислокации, причем длина ее, т. е. длина дислокации, может доходить до многих десятков тысяч периодов решетки. Естественно, что представленное на фиг. 10, г расположение атомов в плоскости, перпендикулярной к оси дислокации AD, является приближенным. Точное распределение атомов вблизи центра или ядра дислокации неизвестно.  [c.25]



Смотреть страницы где упоминается термин Период решетки кристаллической : [c.17]    [c.67]    [c.302]    [c.71]    [c.36]    [c.81]    [c.186]    [c.357]    [c.30]    [c.60]   
Справочное руководство по физике (0) -- [ c.115 ]



ПОИСК



Кристаллическая решетка

Кристаллические

Особенности прецизионных методов измерения периодов кристаллической решетки

Период

Прецизионное определение периодов кристаллической решетки

Решетка период



© 2025 Mash-xxl.info Реклама на сайте