Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник теплоты

Прохождение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т. п.  [c.3]

Электронный луч — источник теплоты, разогревающий и расплавляющий металл, создается электронной пушкой, питающейся от силового выпрямителя, блока нагрева катода, а управление энергетическими параметрами луча — от блока управления модулятором (регулируется сила тока в луче), блока фокусировки (регулируется поперечное сечение луча) и блока отклонения луча (определяется местонахождение луча на детали и перемещение луча по пей) (рис. 84).  [c.158]


При расчетном определении по схеме точечного быстродвижущегося источника теплоты площадь, ограниченная той или иной  [c.186]

В целях максимального ограничения роста зерен при сварке предпочтительны методы с сосредоточенными источниками теплоты (например, дуговая сварка предпочтительней газовой) и малой погонной энергией. Наиболее распространены ручная дуговая сварка покрытыми электродами и механизированная и углекислом газе и под флюсом. Для малых толп ,ин иногда применяют аргонодуговую сварку неплавящимся электродом.  [c.274]

Как показал опыт, все без исключения тепловые двигатели дол, ны иметь горячий источник теплоты, рабочее тело, совершающее замкнутый процесс — цикл, и холодный источник теплоты.  [c.21]

Тепловой двигатель без холодного источника теплоты, г. е. двигатель, полностью превраш,аюш,ий в работу всю полученную от горячего источника теплоту, называется вечным двигателем второго рода.  [c.22]

Рассмотрим простейший случай, когда имеется один горячий с температурой Ti и один холодный с температурой Ti источники теплоты. Теплоемкость каждого из них столь велика, что отъем рабочим телом теплоты от одного источника и передача ее другому практически не меняет их температуры. Хорошей иллюстрацией могут служить земные недра в качестве горячего источника и атмосфера в качестве холодного.  [c.22]

Вводим цилиндр в соприкосновение с горячим источником теплоты. Расширяясь изотермически при температуре h от объема Va до объема Vb, газ забирает от горючего источника теплоту q = T (sj —  [c.23]

Таким образом, в результате цикла каждый килограмм газа получает от горячего источника теплоту Q[, отдает холодному теплоту Q2 и совершает работу  [c.23]

При наличии только двух источников теплоты с температурами Т и Т2 можно осуществить более сложный цикл, если использовать регенерацию теплоты. Сущность ее заключается в следующем.  [c.24]

Таким образом, равновесные циклы, подобные рассмотренному и осуществляемые так же, как и цикл Карно, между двумя источниками теплоты, имеют КПД, равный КПД цикла Карно. Они называются обобщенными (регенеративными) циклами Карно.  [c.24]

Ранее было показано, что для равновесных процессов справедливо соотношение ds = 6q/T. Разобранный пример достаточно наглядно показывает, что в неравновесных процессах ds> bq/Т, если б<7 — количество подведенной к системе или отведенной от нее теплоты, а Т — температура источника теплоты. Обе записи являются аналитическими выражениями второго закона термодинамики  [c.27]

Рассмотрим термодинамическую систему, представленную схематически на рис. 5.1. По трубопроводу / рабочее тело с параметрами Т, pi, t) подается со скоростью С[ в тепломеханический агрегат 2 (двигатель, паровой котел, компрессор и т.д.). Здесь каждый килограмм рабочего тела в общем случае может получать от внешнего источника теплоту q и совершать техническую работу например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок 3 со скоростью сг, имея параметры Гг, pi, vi.  [c.43]


Так как рассматриваемая система содержит только один источник теплоты (окружающую среду с неизменной температурой То), то равновесный процесс можно представить себе либо при отсутствии теплообмена между потоком и сре-  [c.54]

Назначением теплосиловых установок является производство полезной работы за счет теплоты. Источником теплоты служит топливо, характеризующееся определенной теплотой сгорания Q. Максимальная полезная работа /. акс, которую можно получить, осуществляя любую химическую реакцию (в том числе и реакцию горения топлива), определяется соотношением Гиббса (1839—1903) и Гельмгольца (1821 —1894), получаемым в химической термодинамике  [c.56]

Чтобы исключить эксергетические потери за счет неравновесного теплообмена с горячим источником теплоты, целесообразно использовать в качестве рабочего тела газы, получающиеся при сгорании топлива. Это удается осуществить в двигателе внутреннего сгорания (ДВС), сжигая топливо непосредственно в его цилиндрах.  [c.57]

В качестве источников теплоты для котельных установок используются природные и искусственные топлива, отходящие газы промышленных печей и других устройств, солнечная энергия, энергия деления ядер тяжелых элементов (урана, плутония) и т. д.  [c.146]

Источники теплоты. Основными источниками теплоты (горячей воды и пара) являются ТЭЦ и котельные.  [c.192]

В этом случае для определения мощности отопительных приборов Qo составляется тепловой баланс помещения с учетом всех посторонние источников теплоты и всех источников теплопотерь  [c.196]

Солнечное отопление в последнее время начинает довольно широко использоваться в мировой практике. Получает применение оно и у нас в Средней Азии. Основным элементом системы солнечного отопления (источником теплоты системы) является солнечный коллектор (рис. 23.5), в котором нагревается вода. Большая часть солнечного излуче-  [c.196]

Остальная часть системы отопления не отличается от приведенных выше. Обычно солнечные системы (особенно в условиях СССР) являются дополнительными и резервируются постоянным источником теплоты, не зависящим от погоды и времени года. В СССР уже возведено несколько солнечных домов, а в Крыму введена в строй солнечная электростанция мощностью 5 МВт. Расчеты систем солнечного отопления приведены в [17].  [c.197]

Предположим, что адиабаты пересекаются в точке с. Проведем между ними изотермический процесс аЬ, получим цикл аЬс, в котором совершается работа (эквивалентная заштрихованной площади) за счет охлаждения одного источника теплоты, что противоречит второму закону термодинамики.  [c.209]

Вышеприведенные выводы, относящиеся к самопроизвольным изменениям, применимы только к изолированным системам. На практике большинство наблюдаемых систем не являются изолированными, и поэтому важно определить изолированную систему, прежде чем применять к ней концепции второго закона термодинамики. Вообще изолированную систему обычно определяют как рассматриваемую систему плюс окружающую ее среду. Окружающая среда обычно включает в себя источник теплоты для получения и отдачи энергии в форме теплоты и источник работы, содержащий устройства для получения и отдачи энергии в форме работы. Земная атмосфера может быть рассмотрена как источник теплоты и как источник работы.  [c.194]

Рассмотрим цилиндр с газом как систему, окруженную источниками теплоты и работы. Этот цилиндр и источники вместе составляют изолированную систему, к которой применимы концепции второго закона термодинамики.  [c.194]

Уравнение (6-28) указывает на то, что все обратимые циклы, протекающие между одними и теми же двумя температурными уровнями источника и теплоприемника, будут иметь одинаковую эффективность превращения теплоты в работу. Коэффициент полезного действия будет функцией только двух температур и не будет зависеть от частных обратимых процессов и отдельных работающих газов, которые используются в цикле. Уравнение (6-28) также свидетельствует о том, что чем выше температура источника теплоты и ниже температура теплоприемника, тем ближе эффективность превращения приближается к единице.  [c.197]


Это выражение можно рассматривать как количество работы, которое можно было бы получить, если количество теплоты Q сообщить обратимому циклическому тепловому двигателю, работающему между двумя источниками теплоты с температурами Т и (рис. 43).  [c.204]

В качестве источника теплоты при электрической сварке плавлением можно использовать различные источники — электрическую дугу (электродуговая сварка), теплоту шлаковой ванны (электрошлаковая сварка), теплоту струи ионизированных газов холодной пла. злгы (плазменная сварка), теплоту, выделяемую в изделии в результате преобразования кинетической энергии электронов (электронно-лучевая сварка), теплоту когерентного светового луча лазера (лазерная сварка) и некоторые другие.  [c.4]

Дуговая плазменная струя — интенсивный источник теплоты с Бшроким диапазоном технологических свойств. Ее можно исполь зовать для нагрева, сварки или резки как электропроводных металлов (обе схемы рис. 53), так и неэлектропроводпых материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия, рис. 53, б). Тепловая эффективность дуговой плазмониой струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости  [c.65]

Значительно более жесткие требования по точности выполнения устанавливаемых режимов предъявляются к манипуляторам и механизмам перемещения сварочного источника теплоты в автоматизированных установках. Допустимы следуюн(ие колебания скорости перемещения при сварке под флюсом 5% при аргонодуговой сварке тонколистовых металлов 2% в установках для электронно-лучевой и лазерной сварки менее ztl%. Точность установки свариваемых изделий и отклонение положения стыка при сварке не должно нревын1ать 20—25% поперечного размера площади пятна ввода теплоты в изделие, т. е. при сварке под флюсом это составляет J —2 мм при микроплазмен-ной — не более 0,25 мм нри электронно-лучевой и лазерной (в зависимости от диаметра луча) от tO,l мм до 10 мкм.  [c.123]

В сварочной ванне расплавленные основной и, если используют, доно,л нительиый металлы переменгиваются. По мере перемещения источника теплоты вслед за ним перемещается и сварочная ванна. В результате потерь теплоты на излучение, теплоотвод в изделие, а при электрошлаковой сварке — ив формирующие ползуны в хвостовой части ванны происходит понижение температуры расплавленного металла, который, затвердевая, образует сварной шов. Форма и o6iieM сварочной ванны зависят от способа сварки и основных параметров режима. Ее объем может составлять от миллиметров до сотен кубических сантиметров.  [c.208]

Некоторые металлы (медь, магний, алюминий) обладают сравнительно вьгсокими теплопроводностью и удельной теплоемкостью, что способствует б1.1строму охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.  [c.340]

Вследствие высокой теплопроводности алюминия необходимо нрпмене1гие мощных источников теплоты. С этой точки зре-mu[ в ряд(5 с.лучаев желательны подогрев начальных участков шва до температур]. 120—150 С или применение предварительного и сопутствующего подогрева.  [c.355]

Во всех других случаях любой цикл с верхней температурой Т и нижней температурой Т2 имеет термический КПД ниже, чем цикл Карно. На рис. 3.5, б изображен произвольный цикл efgh, осуществимый при наличии бесконечно большого количества источников теплоты. Опишем вокруг этого цикла цикл Карно abed и обозначим через Л, В и т. д. соответствующие площадки, тогда  [c.24]

В низкотемпературных процессах используются обычно вода и водяной пар. Эти теплоносители позволяют получать высокие коэффициенты теплоотдачи в теплообменных аппарата с, они дешевы и могут транспортироваться на значительные расстояния, теряя пэ пути относительно мало теплоты. Для экономичной работы всей системы теплэснаб-жения, объединяющей источник и потребитель теплоты, желателен сбор и возврат образующегося из пара конд нсата. Чистоту этого конденсата трудно сбеспе-чить. Так, конденсат, образующийся в подогревателях нефтепрогуктов и растворов красителей, часто в источник теплоты не возвращается, поскольку при выходе из строя нагревательных трубок теплообменника-подогревателя конденсат загрязняется и становится непригодным для питания котлов.  [c.191]

Немалую роль в обще1У балансе теп-лопотребления предприятия могут играть котлы-утилизаторы и устройства испарительного охлаждения технологического оборудования (см, далее гл. 2), На ряде предприятий за счет использования вторичных энергоресурсов покрывается до половины потребности в теплоте. В качестве источников теплоты могут также использоваться атомные станции теплоснабжения (A T), представляющие собой по существу атомные котлы.  [c.192]

Тепловой баланс помещения. Системы отопления, поддерживаюш.ие внутри помещения необходимую температуру, рассчитываются обычно на тепловую мощность, равную мощности теплопо-терь. Однако часто в производственных, конторских, общественных и других помещениях имеются источники теплоты, которые наряду с отопительными приборами могут участвовать в компенсации теплопотерь здания через его ограждения (стены, пол. потолок, двери). К этим источникам относятся сами люди, работающие механизмы, технологические печи и приборы, массы нагретых материалов, вносимых в помещения, и др.  [c.196]

Электрическое отопление. Этот вид отопления применяется в нашей стране в виде исключения в районах, обеспеченных электроэнергией от ГЭС или АЭС, при отсутствии местных Т зпливных ресурсов и при дорогостоящей доставке топлива из других районов страны, а также для небольших отдельно стоящих зданий с малыми расходами теплоты, удаленных от районных источников теплоты и тепловых сетей, для которых строительство и эксплуатация собственной котельной экономически нецелесообразны. К таким зданиям относятся насосные станции для перекачки воды и канализационных стоков, сторожевые посты и объекты вне городск(ЗЙ застройки.  [c.196]


В кипятильнике при pK = onst происходит выпаривание из раствора компонента за счет подводимой от горячего источника теплоты Ц. Пар направляется в конденсатор, где, отдавая теплоту охлаждающей среде (воде), конденсируется также при p = onst. При этом образуется жидкость с высокой концентрацией аммиака. В регулирующем вентиле РВ2 давление этого легкокипящего компонента снижается до давления в абсорбере (ратемпература кипения. С этими параметрами жидкость поступает в испаритель и, отбирая теплоту переходит в пар. Пар направляется в абсорбер, где поглощается раствором выделяющаяся при этом теплота отводится охлаждающей водой. Чтобы не было изменения концентрации растворов в кипятильнике и абсорбере а( а> к) вследствие выпаривания компонента в первом и поглощения во втором, часть обогащенного легкокипящим компонентом раствора из абсорбера перекачивается насосом в кипятильник, а из последнего часть обедненного раствора через дроссель FBI направляется в абсорбер.  [c.201]

Пример 2. Количество теплоты Q передано от источника теплоты с температурой Т непосредственно теплоприемнику с температурой Т . Общее изменение энтрооии дЛя этого необратимого процесса переноса теплоты  [c.204]


Смотреть страницы где упоминается термин Источник теплоты : [c.71]    [c.83]    [c.214]    [c.307]    [c.24]    [c.27]    [c.59]    [c.190]    [c.194]    [c.194]    [c.194]    [c.198]   
Техническая термодинамика. Теплопередача (1988) -- [ c.61 ]



ПОИСК



Быстродвижущиеся источники теплоты

Внутренние источники теплоты

Газовое пламя как источник теплоты

Графики отпуска теплоты энергетическими источниками СИТ и СЦТ

Движущиеся источники теплоты

Источник теплоты быстродействующи

Источник теплоты быстродействующи плоский

Источник теплоты линейный

Источник теплоты линейный в бесконечной пластине

Источник теплоты мгновенный точечный

Источник теплоты неподвижный

Источник теплоты непрерывно действующий движущийся

Источник теплоты нормально круговой

Источник теплоты объемный

Источник теплоты плоский в стержне

Источник теплоты сварочный

Источники образования теплоты

Источники теплоты быстро движущиеся

Источники теплоты быстро мгновенные

Источники теплоты быстро неподвижные

Источники теплоты быстро непрерывно действующие

Источники теплоты быстро нормальные

Источники теплоты быстро подвижные

Источники теплоты быстро распределенные

Источники теплоты быстро сосредоточенные

Источники теплоты для промышленных

Источники теплоты для промышленных котлов

Источники теплоты и их схематизация

Источники теплоты и тепловые сети систем теплоснабжения

Источники экономии топлива при комбинированном производстве теплоты и электроэнергии

Мощность внутреннего источника теплоты

Мощность источника теплоты эффективная

Мощные быстродвижущиеся источники теплоты

Несимметричная задача без источника теплоты

Основные источники и потребители теплоты

Периоды теплонасыщения и выравнивания температур при нагреве движущимися источниками теплоты

Периоды теплонасыщения и выравнивания температур при нагреве тел подвижными источниками теплоты

Подвижные сосредоточенные источники теплоты постоянной мощности

Поле температур и тепловой поток около источника теплоты в полуограниченном теле (массиве)

Политропные процессы с источником теплоты

Распределенные источники теплоты

Распространение теплоты от неподвижных источников

Расчеты тепловых процессов при нагреве тел источниками теплоты

Схемы источников теплоты

Схемы сварочных источников теплоты

ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ Естественные источники и поглотители теплоты

Тела с внутренними источниками теплоты

Тепловой поток и температурное поле в телах с внутренними источниками теплоты

Теплопроводность в теле с внутренними источниками теплоты

Теплопроводность круглого стержня и трубы в внутренним источником теплоты

Теплопроводность однородной стенки при отсутствии внутренних источников теплоты

Теплопроводность при наличии внутренних источников теплоты

Теплопроводность тел с внутренними источниками теплоты

Теплота испарения 117 — источника

Термодинамические процессы с внутренними источниками (стоками) теплоты

Точные решения задачи теплообмена пластины в потоке сжимаемого газа с источником теплоты

Учет распределенности источника теплоты в расчетах полей температур

Учет распределенности источников теплоты



© 2025 Mash-xxl.info Реклама на сайте