Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура кристаллизации

Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением.  [c.45]

Величиной или степенью переохлаждения называю разность между теоретической и фактической температурами кристаллизации.  [c.45]

Если, например, теоретическая температура кристаллизации сурьмы равна 631°С, а до начала процесса кристаллизации жидкая сурьма была переохлаждена до 590°С и при этой температуре закристаллизовалась, то степень переохлаждения п определяется разностью 631—590 = 41°j .  [c.45]


Каждой температуре кристаллизации (степени переохлаждения) отвечает определенный размер устойчивого зародыша более мелкие, если они и возникнут, тут же растворяются в жидкости, а более крупные растут, превращаясь в зерна— кристаллы. Чем ниже температура (больше степень переохлаждения), тем меньший размер имеет устойчивый зародыш, тем больше число центров кристаллизации образуется в единицу времени, тем быстрее протекает процесс кристаллизации. Таким образом, с увеличением степени переохлаждения быстро возрастают величина ч. ц. и общая скорость кристаллизации.  [c.50]

Если определить у сплавов, лежащих на разрезе е —Ь температуры кристаллизации соответствующих фаз, то можно построить вертикальный разрез, изображенный на рис. 127.  [c.155]

Термические кривые, характеризующие процесс кристаллизации чистых металлов при охлаждении с разной скоростью, даны на рис, 17, При очень медленном охлаждении степень переохлаждения невелика и процесс кристаллизации протекает при темиературе, близкой к равновесной (рис, 17, кривая t j). На термической кривой при температуре кристаллизации отмечается горизонтальная площадка (остановка в падении температуры), образование которой объясняется выделением скрытой теплоты кристаллизации, несмотря на отвод тепла при охлаждении.  [c.29]

Чем больше скорость образования зародышей и чем больше скорость их роста, тем быстрее протекает процесс кристаллизации. При равновесной температуре кристаллизации (Тап) число зародышей и скорость роста равны нулю, поэтому кристаллизации не происходит (рис. 22). При увеличении степени переохлаждения скорость  [c.34]

При кристаллизации доэвтектических сплавов (2,14—4,3 % С) из жидкой фазы по достижении температур, соответствующих линии ликвидус ВС, сначала выделяются кристаллы аустенита. Состав жидкой фазы в интервале температур кристаллизации определяется линией ВС, а аустенита — линией JE.  [c.121]

При помощи термического анализа можно построить кривые нагрева или охлаждения вещества, записывая температуру через равные промежутки времени. Полученные кривые неодинаковы для кристаллического и аморфного веществ. На рис. 2.1,а приведена кривая охлаждения кристаллического вещества, которая показывает, что переход кристаллического вещества из жидкого состояния в твердое происходит при температуре кристаллизации (Ткр). Этот процесс перехода протекает в определенный промежуток времени и сопровождается выделением скрытой теплоты кристаллизации. Поэтому, несмотря на охлаждение металла, температура в течение данного времени остается неизменной (на кривой горизонтальный участок).  [c.21]


При температуре, совпадающей по величине с / .к, непосредственно плавления — кристаллизации не происходит. При очень быстром охлаждении жидкого вещества до температуры эта температура и является реальной температурой кристаллизации.  [c.24]

Ледебурит (Л) — это смесь аустенита и цементита. Он возникает в процессе первичной кристаллизации при 1147° С (это наиболее низкая температура кристаллизации в системе сплавов Ре—С). Входящий в состав ледебурита аустенит при 727° С превращается в перлит, а в интервале от 727° С до обычных температур порядка 20° С ледебурит состоит из смеси перлита и цементита. Твердость его около 700 НВ, он обладает значительной хрупкостью. Ледебурит характерен для структуры белых чугунов (рис. 5.2,ж).  [c.62]

Сплав V (0,8% С) является эвтектоидным. Кристаллизация с образованием аустенита протекает в интервале 5—6 (см. рис. 15.4,а). Затем аустенит охлаждается до температуры точки 7 (727° С), происходит эвтектоидное превращение и образуется структура перлита. У сплава V имеется перегиб при температурах кристаллизации (участок 5—6) и площадка при перлитном превращении (участок 7—7 ).  [c.64]

Физические свойства новой системы.— раствора отличаются от свойств растворителя, так как растворенное вещество, образуя с ним комплексы, понижает его активность и, в частности, всегда понижает упругость его пара (Рауль), а это приводит к изменению температуры кристаллизации и температуры кипения.  [c.282]

Понижение температуры кристаллизации  [c.282]

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие остаточные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раствора Li (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марганец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации металла шва влияние легкоплавкой сульфидной эвтектики понижается и повышается сопротивление металла образованию горячих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.  [c.328]

Физические свойства сварочных шлаковых систем. Температура плавления сварочных шлаков должна быть, как правило, ниже, чем температура кристаллизации свариваемого металла. Температура плавления в сложных системах представляет собой функцию состава и определяется соответствующими диаграммами плавкости (состав — свойство). Сплавы силикатов и алюмосиликатов обладают способностью к переохлаждению и образованию стекловидных шлаков, а это обстоятельство осложняет задачу экспериментального исследования.  [c.355]

Особенности металлургических процессов при дуговой сварке под слоем плавленых флюсов. При дуговой сварке под слоем плавленого флюса следует различать высокотемпературную зону, охватывающую плавящийся торец электрода, капли металла, проходящие дуговой промежуток, и активное пятно дугового разряда в сварочной ванне, и низкотемпературную зону — хвостовая часть ванны, где температура приближается к температуре кристаллизации металла (см. рис. 9.40).  [c.369]

Температура Т , при которой равновероятно как твердое, так и жидкое состояние, — равновесная или теоретическая температура кристаллизации. Затвердевание металла при этой температуре еще не происходит. Для кристаллизации необходимо образование зародышей и их рост в результате присоединения частиц контактирующей с ними жидкости. Это достигается при температуре ниже критической, т. е. при переохлаждении.  [c.435]


Гф — фактическая температура — равновесная температура кристаллизации и,р — скорость кристаллизации I — твердая фаза II — расплав  [c.442]

Увеличение концентрации примеси перед фронтом кристаллизации приводит к снижению температуры ликвидуса. При этом возникает область концентрационного переохлаждения АТ (рис. 12.10), поскольку из-за изменения состава 1 этого слоя меняется и температура кристаллизации 2. Фактическая температура 3 расплава, зависящая от сложившихся температурных условий кристаллизации, может быть ниже равновесной температуры 2, что вызывает переохлаждение 4 и обеспечивает возможность кристаллизации.  [c.443]

На рис. 12.23 приведен участок диаграммы состояния сплава, содержащего примесь С, образующую непрерывный ряд твердых растворов. В начальный момент затвердевания при температуре Го (на диаграмме точка Ао) образующаяся твердая фаза имеет состав, соответствующий точке Во на линии солидуса, т. е. содержит Ств примеси, входящей в твердый раствор. Поскольку это количество меньше, чем среднее, находящееся в расплаве исходного состава, он обогащается компонентом С до содержания i. Температура кристаллизации расплава этой концентрации будет ниже и соответствует Г), а образующаяся из него твердая фаза, состав которой определяется соответствующей точкой Bi на кривой солидуса, будет содержать Ga, примеси и т. д. Таким образом, вследствие того, что образующаяся твердая фаза всегда будет иметь меньшее количество примеси, чем ее средняя концентрация в расплаве, на поверхности раздела жидкой и твердой фаз будет находиться слой жидкости, обогащенной примесью, — участок концентрационного уплотнения.  [c.456]

Температура, при которой практически начинается кристаллизация, называется фактической температурой кристаллизации (Тк) [15].  [c.41]

Каждой температуре кристаллизации (степени переохлаждения) отвечает определенный размер Чем ниже температура (больше степень переохлаждения), тем меньший размер имеет устойчивый зародыш [15],  [c.43]

При нагревании в аморфных металлах происходят структурные изменения. В отличие от обычных стекол (оксидных), которые при нагреве размягчаются и переходят в расплав, а при охлаждении расплава снова образуется стекло, металлические стекла при повышении температуры кристаллизуются. Эта особенность обусловлена металлическим типом связи. Температуры кристаллизации, (Тк) аморфных металлических сплавов в твердом состоянии достаточно велики. Например, для сплавов переходных металлов с металлоидами Тк превышает (0,4- 0,6) Тил-372  [c.372]

В табл. 3.59—3.62 приведены временное сопротивление разрыву (Твр, предел текучести (Тт, твердость материала по Виккерсу HV, модуль Юнга Е, модуль сдвига G, объемный модуль В, коэффициент Пуассона ц, температура кристаллизации при отжиге из аморфного состояния Тк. В примечании для некоторых сплавов указаны их общепринятые названия.  [c.83]

Температура кристаллизации (застывания) топлива, масел и гидравлических жидкостей, °С> Вещества расположены в порядке возрастания [44, 22, 38]  [c.308]

Температура кристаллизации. 2 Температура застывания.  [c.308]

Для начала кристаллизации необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Из кривых, приведенных на pff . 25, видно, что это возможно только тогда, когда жидкость будет охлаждена ниже точки Температура, при которой практически начинается кристаллизация, может быть названа фактической температурой кристаллизации.  [c.45]

При достижении температуры кристаллизации на кривой температура — время появляется горизонтальная площадка, Taif как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. По окончании кристаллизации, т. е. после полного перехода в твердое состояние, температура снова начинает снижаться, и твердое кристаллическое вещество охлаждается. Теоретически процесс кристаллизации изображается кривой /. Кривая 2 показывает реальный процесс кристаллизации. Жидкость непрерывно охлаждается до температуры переохлаждения Та, лежащей ниже теоретической температуры кристаллизации Ts. При охлаждении ниже температуры Ts создаются энергетические условия, необходимые для протекания процесса кристаллизации.  [c.45]

Исследуя кристаллизацию прозрачных органических веществ при разных температурах, Г. Тамман установил, что ч. ц. и с. к. определяются степенью переохлаждения. Графически изменения величин ч. ц. и с. к. в зависимости от переохлажденпк представлены на рис. 29. Зависимость ч. ц. и с. к. от переохлаждения выражается кривой с максимумом. При теоретическо11 температуре кристаллизации (п = 0) значения с. к. и ч. ц. равны нулю и процесс кристаллизации идти не может, что находится в полном соответствии с изложенным выше положением о необходимости переохлаждения для протекания процесса. С увеличением переохлаждения значения с. к. и ч. ц. возрастают, достигают максимума и затем понижаются при больших величинах переохлаждения практически падают до нуля.  [c.48]

Размер образовавшихся кристаллов зависит от соотношения величин с. к, и ч. ц. при температуре кристаллизации, при данной степени переохлаждения. При большом значении с. к. и малом значении ч. ц. (например, при малых степенях переохлаждения, рис. 29), образуются немногочисленные крупные кристаллы при малых значениях с. к. и больших ч. ц. (большое переохлаждение) образуется большое число мелких кристаллов. Наконец, в соответствии с кривыми Таммана, есл 1 удается очень сильно переохладить жидкость без кристаллизации, то с. к. и ч. ц. становятся равными нулю, жидкость сохраняется непревращенной, незакристаллизовавшейся. Однако жидкие металлы мало склонны к переохлаждению и такого состояния достичь не могут. Соли, силикаты, органические веще-  [c.48]


При наличии одновременно трех фаз в двойной системе количество их нельзя определить, так как в процессе кристаллизации количество их непрерывно меняется. Так, в диаграмме I рода три фазы могут сосуществовать при температуре кристаллизации эвтектики, когда в равновесии находятся три фазы, копцеитрациоиные точки которых расположены на одной горизонтали, т. е. жидкость концентрации С, кристаллы А концентрации D и кристаллы В концентрации Е (см. рис. 93). В процессе кристаллизации количество жидкой фазы С уменьшается, а количества твердых фаз увеличиваются, концентрация же фаз не меняется.  [c.123]

Следовательно, с увеличением степени переохлаждения (или с понижением температуры кристаллизации) размер критического зародыша уменьшается, тогда и работа, необходимая для его об-разова1птя, будет меньше. Поэтому с увеличением стеиени переохлаждения АТ, когда к росту способны зародыши все меньшего размера, сильно возрастает число зародышей (центров) кристаллизации (ч. з.) или скорость образования этих зародышей (с. р.) (см. рис. 22) Рост зародьппей кристаллизации происходит в результате перехода атомов из переохлажденной л идкости к кристаллам. Кристалл растет послойно, при этом каждый слой имеет одноатомную толщину. Различают два элементарных процесса роста кристаллов,  [c.33]

Зональная ликвация по сечению слитка бывает прямой и реже обратной . При прямой ликвации поверхностные зоны слитка обогащены компонентом, повышающим температуру плавления, а центральные зоны слитка содержат больше компонента, понижающего эту температуру. При обратной ликвации наблюдается противоположная закономерность. Развиг 1> зональной ликвации зависит от скорости охлаждения, размера слитка, скорости диффузии, интервала температур кристаллизации н т, д. Чем бо./1ьше развита дендритная ликвация — тем обычно меньше зональная ликвация.  [c.94]

Развитие окислительно-восстановительных процессов при сварке происходит в условиях высоких температур, значительно превышающих температуры процессов выплавки стали, температурное поле в зоне сварки неоднородно и можно выделить зону высоких температур, превышающих 2300 К (высокотемпературная зона), и зону низких температур, приближающихся к температуре кристаллизации металла, т. е. 2000 К (низкотемпературная зона), как это показано на рис. 9.40. В высокотемпературную зону 1 входит капля на плавящемся электроде, активно реагирующая с дленкой шлака, капля, проходящая столб дугового разряда и покрытая пленкой шлака, а также передняя часть ванны. Низкотемпературная зона 2 охватывает кристаллизующуюся часть сварочной ванны, где шлак окончательно должен отделиться от металла шва.  [c.362]

Коэффициент химической активности флюса Аф определяет легирование через флюс металла шва кремнием и марганцем в процессе сварки под флюсом. Как было указано ранее, эти элементы будут связывать кислород, растворенный в металле, в свои оксиды при температурах, близких к температуре кристаллизации металла ( хвостовая часть ванны). В этом случае образующиеся твердые частицы Si02, МпО и их возможных соединений (например, МпО-ЗЮг) не успеют удалиться из металла сварочной ванны и останутся в металле шва в качестве эндогенных  [c.372]

Состав металла шва оказывает существенное влияние на сопротивляемость ОШЗ, однако механизм влияния шва на ОШЗ еще недостаточно изучен. Эффективно применение сварочных материалов, имеющих более низкие температуры кристаллизации, превращения аустенита, чем у основного металла, а также имеющих повышенную растворимость водорода и пониженный коэффициент его диффузии. Этими эффектами отчасти можно объяснить значительное повышение сопротивляемости ОШЗ трещинам при применении аустенитных сварочных материалов вместо ферритоперлитных. В отношении ферритоперлитных сварочных материалов имеются данные, что оптимально превышение температур распада аустенита в шве над температурой распада аустенита в ОШЗ на 80... 100 К.  [c.543]

Признаком протекания процесса образования уплотненной трехмерноупорядоченной объемной части структурных элементов кристаллической системы, происходящего за счет рекристаллизации вещества во фрактально расположенных порах, может служить начало резкой усадки твердых тел при некотором их охлаждении ниже температуры кристаллизации (около 2/3 от температуры плавления сплава)  [c.97]

Может ли сушествовать жидкая фаза вещества ниже температуры кристаллизации Что такое степень переохлаждевия  [c.375]

При 25°С периоды решетки составляют а = 0,295111 нм, с = 0,468433 нм атомный радиус г = 0,147 нм плотность 4,5 г/см. Высокотемпературная ji- модификация устойчива от 882°С до температуры плавления, имеет объемноцентрированную кубическую решетку с периодом 0,3282 нм. Плотность /3-титана при 900°С составляет 4,31 г/см жидкого титана при температуре, близкой к температуре кристаллизации, - 4,1 г/см . Теплофизическис свойства титана при высоких температурах приведены в табл. 20.  [c.77]

Охлаждение. После заливки и затвердевания отливку выдерживают в форме до определенной температуры выбивки. Чем выше температура выбивки, тем короче технологический цикл изготовления отливки и больше производительность формовочно-злливоч-ного участка. Ранняя выбивка может привести к образованию трещин, короблению и сохранению в отливке остаточных напряжений. Вблизи температуры кристаллизации сплав имеет низкие прочностные и пластические свойства, поэтому опасность разрушения отливок особенно велика.  [c.344]

Рис. 3.25. Температурная зависимость твердости HV аморфного сплава PdgoSijo ts — температура стеклования, /н—температура кристаллизации [34] Рис. 3.25. <a href="/info/191882">Температурная зависимость</a> твердости HV <a href="/info/6788">аморфного сплава</a> PdgoSijo ts — <a href="/info/116822">температура стеклования</a>, /н—температура кристаллизации [34]

Смотреть страницы где упоминается термин Температура кристаллизации : [c.45]    [c.646]    [c.29]    [c.282]    [c.396]   
Смотреть главы в:

Справочник авиационного техника Изд.3  -> Температура кристаллизации


Металловедение (1978) -- [ c.45 ]

Аморфные металлы (1987) -- [ c.64 , c.115 ]



ПОИСК



Криворучко, С. Ф. Дудник, В. И. Сафонов. О влиянии вакуумного отжига на температуру хрупко-пластичного перехода вольфрама, полученного кристаллизацией из газовой фазы

Кристаллизация

Определение температур кристаллизации металлов и сплавов и построение диаграммы состояния термическим методом

Особенности изменения теплопроводности жидкостей вблизи температуры кристаллизации

Равновесная температура кристаллизации

Температура кристаллизаци

Температура кристаллизаци

Температура кристаллизации (замерзания)

Температура кристаллизации (замерзания) азотной Кислоты

Температура кристаллизации (замерзания) аммиака

Температура кристаллизации (замерзания) аммиакатов

Температура кристаллизации (замерзания) аммиачной селитры

Температура кристаллизации (замерзания) рассолов

Температура кристаллизации (замерзания) растворов

Температура кристаллизации (замерзания) серной кислоты

Температура кристаллизации (замерзания) смазочных масел

Температура кристаллизации (замерзания) смесей

Температура кристаллизации (замерзания) сырой смеси

Температура кристаллизации (замерзания) углеаммиакатов

Температура кристаллизации аморфного

Топливо газообразное виды температура кристаллизации

Ультразвуковой вискозиметр определения температуры кристаллизации парафина



© 2025 Mash-xxl.info Реклама на сайте