Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение кристаллической структуры

Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от качества обрабатываемого металла, от его напряженного состояния, т. е. от скорости резания и давления, а следовательно, от размеров сечения снимаемой стружки и геометрии инструмента. Для достижения возможно меньшего деформирования в поверхностном слое необходимо чистовую.обработку производить с возможно меньшим сечением стружки.  [c.421]


При механической обработке металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, производящихся с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра. Например, после  [c.18]

Скрытая теплота плавления. Чтобы расплавить твердое вещество, т. е. перевести его в жидкое состояние, требуется не только нагреть его до температуры плавления, но еще затратить дополнительную тепловую энергию, которая не повышает температуры расплавляемого тела, а идет на разрушение кристаллической структуры. Пока твердое вещество не перейдет все целиком в жидкое состояние, температура не будет повышаться выше температуры плавления, несмотря на приток тепла и на очень высокую температуру источника тепловой энергии. Повышенная мощность источника тепла может лишь ускорить расплавление, но температура плавящегося вещества будет оставаться постоянной, пока не произойдет его полное расплавление.  [c.78]

Магнезия альба при температуре 300° С начинает разлагаться с выделением углекислоты, вследствие чего происходит снижение механической прочности ньювеля, ухудшение коэффициента теплопроводности, потеря веса и разрушение кристаллической структуры.  [c.49]

Благодаря малым удельным давлениям и отсутствию нагрева при обработке суперфинишированием не происходит разрушения кристаллической структуры поверхностного слоя и получаются износоустойчивые поверхности.  [c.40]

По сравнению с флогопитом мусковит обладает лучшими электроизоляционными свойствами, более прочен механически, тверд, гибок и упруг. Однако многие флогопиты более нагревостойки, чем мусковиты. Допустимая рабочая температура слюд ограничивается выделением входящей в их состав воды (у мусковитов обычно при 500 600° С, у флогопитов — при 8С0 -н 900° С), что связано с потерей прозрачности, увеличением толщины ( вспучиванием ) и разрушением кристаллической структуры плавятся обезвоженные слюды лишь при температуре порядка 1250 -ь 1300° С.  [c.205]


При обработке резанием металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, происходящих с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра например, после шлифования наружный слой стальной детали, закаленной на мартенсит, оказывается закаленным на аустенит следующий слой — на троостит, и только после этого слоя следует слой с первоначальной мартенситной структурой. На качество поверхности влияют смазочно-охлаждающие жидкости. Они уменьшают трение между инструментом и заготовкой и понижают температуру трущихся поверхностей. Наклеп и шероховатость поверхности зависят от вибрации станка, инструмента и заготовки. Колебательные движе-  [c.19]

В диэлектрике (рис. 14, а) запретная зона очень велика. Чтобы электрон мог ее пройти, необходимо сообщить ему значительное количество энергии. При таких условиях происходит непоправимое разрушение кристаллической структуры — пробой изолятора. В полупроводнике (рис. 14, б) запретная зона в несколько раз меньше. Для ее преодоления требуется небольшая затрата энергии (тепловой, электрической, световой и т. п.). В проводниках (рис. 14, в) запретной зоны нет. При обычных энергетических условиях электроны легко переходят из валентной зоны в зону проводимости. Число электронов в этой зоне велико вещество обладает хорошими проводящими свойствами.  [c.15]

Коррозия как разрушение кристаллической структуры. Металлы обычно обладают кристаллической структурой, и разрушение металлов имеет общие черты с разрушением веществ при их растворении или испарении. Летучие металлы вроде кадмия можно вырастить в виде прекрасных маленьких кристаллов путем охлаждения паров при нагреве этих кристаллов они вновь исчезают. То же относится и к кристаллам неметаллов, например йода, с которым было проведено много классических исследований. Главный вывод из последних работ по росту кристаллов заключается в том, что рост идеального кристалла должен быть очень медленным процессом, но при наличии определенных дефектов в структуре (особенно винтовых дислокаций, изучавшихся Франком) рост кристаллов протекает быстро. Дефекты в структуре должны облегчить и удаление материала, если условия благоприятствуют его удалению, а не отложению. Неудивительно, что коррозия металлов обычно начинается на участках структурных несовершенств, хотя часто она распространяется вширь. Этот вопрос сложный и нередко большую роль в нем играет местное разрушение пленки (стр. 105). Сказанного должно быть достаточно, чтобы объяснить, почему современное развитие физики кристаллов имеет важное значение для специалистов, работающих в области коррозии металлов, и почему кристаллофизики часто используют образование питтингов, т. е. по существу коррозионный процесс для выявления участков с определенными дефектами (дислокациями).  [c.25]

Можно предположить, что уменьшение скорости окисления, показанное на фиг. 120, а, происходит не за счет образования сплошного окисного слоя на всей поверхности, а в основном за счет недостатка поверхностных атомов в особо активном состоянии однако сходство между кривыми, характеризующими процессы окисления, на отожженных и прокатанных поверхностях одного и того же металла говорит за то, что на практике образование окисных пленок является основной причиной, вызывающей уменьшение высокой начальной скорости окисления Даже, если принять за основу положение об израсходовании активных атомов разрушенной кристаллической структуры, то вывод получается тот же самый механическое воздействие, прилагаемое непрерывно или периодически, помимо удаления окисла переводит металл в химически активное состояние, что еще больше подтверждает вывод, что совместное (химико-механическое) действие будет приводить Х большим разрушениям, чем разрушение, которое можно ожидать отдельно от химического и механического воздействия.  [c.672]


Для объяснения значений п меньше двух следует признать, что в процессе роста пленки вследствие постоянного разрыхления ее внешних слоев (например, в результате разрушения кристаллической структуры за счет реализации внутренних механических напряжений) торможение диффузии возрастает не пропорционально увеличению толщины, но в меньшей степени.  [c.51]

В целом создается впечатление, что подобного рода разрушение связано с изменением кристаллической структуры металла. Именно этим и объясняли в свое время разрушение при циклических напряжениях.  [c.474]

Рассмотрим твердое тело с кристаллической структурой произвольной формы и конечных размеров. Пусть в теле имеется несплошность начальной длины ао в направлении развития разрушения. Тело нагружают случайным спектром нагрузок  [c.202]

Ki - Температурные зависимости вязкости разрушения конструкционных сплавов трех типов с разной кристаллической структурой приведены на рис. 2 [4]. За исключением титанового сплава, значения Ki получены на основании результатов определения /-интеграла, Ki J)- Отметим, что наибольшую вязкость при низких температурах имеет сплав с г. ц. к. решеткой. Вязкость разрушения коррелирует с пределом текучести (рис. 3) чем выше предел текучести, тем ниже вязкость. При выборе материала конструктор, сопоставляя различные свойства, должен обеспечить оптимальные соотношения прочности и надежности.  [c.31]

Структурно-нечувствительные свойства (модули упругости-, плотность, температура плавления, тепловое расширение и др.) являются строго определенными для той или иной фазы и слабо меняются из-за дефектности строения кристалла (зерна), тогда как-структурно-чувствительные свойства (сопротивление разрушению, пластичность, наклеп, ползучесть, твердость и др.) зависят не только от состава и кристаллической структуры металла, но и от несовершенств структуры зерна, возникших на протяжении всей предыстории металла детали.  [c.26]

Если с помощью уравнений (16) и (17) рассчитать величины Оа, то можно обнаружить, что при любых значениях Уд (за исключением случая исчезающе тонких оксидных пленок) получаются значения порядка единиц и десятков мегапаскаль, а в отдельных случаях — до тысяч мегапаскалей. Столь высокие напряжения должны были бы неизбежно вызывать разрушение подложек и оказывать существенное влияние на поверхностное растрескивание, однако в действительности разрущения массивных образцов под действием рассматриваемых напряжений не наблюдается. Факт получения аномально высоких значений при использовании стандартных уравнений для напряжений роста с определенностью свидетельствует о том, что сами эти уравнения недостаточно хорошо описывают реальные системы. При высоких температурах может происходить аккомодация деформаций, связанных с ростом оксида, путем локализованного пластического течения в сплаве или даже в самом оксиде, что приведет к снижению напряжений в обеих фазах до уровня напряжений пластического течения при данной температуре. Одна из основных причин неадекватности уравнений, описывающих напряжения роста, состоит в том, что в них неявно предполагается когерентность межфазной границы между окислом и металлической подложкой. Это означает, что имеет место либо эпитаксия, либо, по крайней мере, когерентное согласование кристаллических решеток фаз, расположенных по обе стороны границы, причем различия атомных объемов должны быть скомпенсированы за счет согласующихся деформаций и напряжений. Хотя определенная степень когерентного согласования на самых ранних стадиях окисления вполне возможна, все же толстые пленки окалины, кристаллическая структура и химический состав которых так сильно отличается от структуры и состава металлов, скорее всего будут отделяться от подложек некогерентной межфазной границей. В этом случае расчеты оа нельзя проводить с помощью уравнений (16) и (17). В действительности аккомодация даже очень существенных различий атомных объемов должна осуществляться в основном в некогерентной границе, в результате чего напряжения роста как в оксиде, так и в подложке будут невелики.  [c.30]

Влияние электрохимических параметров, таких как концентрация и потенциал, и сам процесс разрушения, по-видимому, зависят от кристаллической структуры. Поэтому металлургические факторы для этих систем сплавов можно обобщить  [c.406]

Наряду с изложенной существуют другие физические теории процессов деформирования и разрушения. Так, согласно одной из таких теорий зависимость долговечности от величины напряжения объясняется плавлением и вязким течением на границах кристаллов разрушение металла связано с возникновением в зоне нарушения кристаллической структуры на границах между кристаллами некоторого числа зародышей жидкой фазы.  [c.28]

Керамика Сплавы цирконии Углеродистше стали Снижение теплопроводности, плотности, разрушение кристаллической структуры Снижение пластичности, Р предела текучести Снижение пластичности предела текучести  [c.452]

Давление брусков на деталь осуществляется пружинами на головке и регулируется в пределах от 0,5 до 3 Kzj M , увеличиваясь с возрастанием твердости детали. Для стали давление равно от 1,5 до 2 кг/см . Вследствие малых удельных давлений и низких температур (несколько градусов) не происходит разрушения кристаллической структуры поверхностного слоя и получается весьма износоустойчивая поверхность.  [c.439]

Раздел физической химии, рассматривающий субмикроскопические и микроскопические процессы, которые протекают при механическом воздействии на структуру ограничивающей поверхности твердых тел, называется трибомеханика. Зависимости между механическими взаимодействиями и физическими явлениями на границе раздела твердых фаз друг с другом или с окружающей их средой, охватываемые трибофизикой, весьма разнообразны, а энергетические зависимости (энергетические балансы) выяснены еще не полностью. Взаимодействия эти заключаются, в частности, в значительном механическом разрушении кристаллической структуры трущихся или соударяющихся тел вплоть до возникновения аморфного состояния, в пластической деформации, в кристаллографическом превращении (см. 9.13), в локальном плавлении и растворении отдельных частиц, в электронной эмиссии и в переносе зарядов. Все эти изменения мо-  [c.435]


ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ПРИ ФРЕЗЕРОВАНИИ. Силы, действующие при фрезеровании, также как при обработке металлов прочими видами инструментов, определяются деформациями, возникающими при срезании с заготовки стружки каждым зубом фрезы, а также разрушением кристаллической структуры металлов при образовании новых поверхностей на стружке и заготов-  [c.241]

Механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластичное. На механическое состояние в точке имеет некоторое влияние состояние материала в соседних точках. Наконец, что самое важное, само понятие механического состояния в точке не свободно от противоцечий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой.  [c.259]

В целом создается первое впечатление, что подобного рода разрушение связано с изменением кристаллической структуры металла. Именно этим и обт.яснялось в свое время разрушение при циклических напряжениях. Описанное явление получило тогда название усталости, а направление исследований, связанных с прочностью, стало называться усталостной прочностью. В дальнейше.м точка зрения на пршшны усталостного разрушения изменилась, но сам термин сохранился.  [c.389]

Общепринятая технология сварки с подогревом приводит к образованию широких гвердых участков подкалки в около-шовных зонах с крупноигольчатой мартенситной структуро й Укрупнение зерен, наряду с сопутствующими закалочными процессами, способствует скоплению на их границах дефектов кристаллической структуры, росту внутренней энерг ии i снижению сопротивления коррозионному разрушению Структура аустенитного металла шва при этом более 1етеро-генная и вторичные избыточные фазы образуют замкнуплс цепочки. Подогрев при сварке способствует росту количества избыточных фаз в структуре металла шва.  [c.150]

Участок излома в месте очага разрушения имеет, как правило, кристаллическую структуру. При вязком разрушении шеврошн,и узор практически не образуется. В этом случае определяется участок излома, поверхность которого располагается под углом 90° к поверхности трубы, и границы его, где угол излома становится равным порядка 45°. Типы изломов приведены на рис. 1.10.  [c.29]

Таким образом, природа процесса образования поликристаплических сплавов при кристаллизации из расплава такова, что в структуре сплавов изначально закладываются элементы, являющиеся "зародышами разрушения" твердого тела, то есть области скопления различных дефектов кристаллической структуры.  [c.98]

Результаты исследований процессов, связанных с соединением металлов, на основе синергетики должно привести к разработке принципиально новых технологических процессов (1), получению соединений из металлических материалов в аморфном состоянии, удравлению химическим составом и химической стабильности сварного соединения, элективному регулированию кристаллической структурой и вд-пряженно-деформационным состоянием сварного соединения и конструкции, в целом. Кроме того, появляется возможность прогнозирования появления штатных дефектов формирования соединения газовые поры, горячие и холодные трещины, предупреждение развития замедленного разрушения и цр.  [c.111]

Существеным при этом является температура плавления избь[-точной фазы. Она должна быть более высокой, чем пгемпература плавления основного твердого раствора. Разрушение скелета или сетки избыточной фазы при горячей обработке давлением, а также образование изолированных частиц этой фазы приводит к понижению жаропрочности литых сплавов. Из рассмотренного следует, что создание жаропрочных материалов сводится к тому, чтобы тем или иным путем уменьшить величину и скорость разупрочнения сталей и сплавов при повышении температуры. Это достигается путем комплексного легирования сплавов тугоплавкими металлами с получением отливок с заданной кристаллической структурой.  [c.48]

Таким образом, механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластическое. Но, пожалуй, более важным является то, что само понятие механического состояния в точке не свободно от противоречий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой, а само разрушение определяется не только напряженным состоянием, но в ряде случаев характеризуется также и историей нагружения, т. е. зависит от того, в какой последовательности прикладываются силы. В качестве примера достаточно указать на разрушение при периодически изме-няюш,ихся нагрузках. Многократное нагружение и разгрузка могут привести к разрушению, хотя возникающие напряжения остаются существенно меньшими предела текучести.  [c.293]

Полированный металл имеет самый верхний слой из мельчайших кристаллических образований, многие из которых не имеют законченной решетки и представляют собой как бы обломки правильных кристаллических структур. Такое строение позволяет считать этот слой аморфным. Под ним находится слой очень мелких кристаллов, ориентированных в направлении полирования. Далее следует переходная к исходной структуре прослойка слабо наклепанных кристаллов [32]. Если исключить адсорбированную (тленку, то поверхностный слой обработанной инструментом гюверхности состоит из наружного очень тонкого слоя, более или менее сильно разрушенных кристаллических зерен и наклепанного слоя четкой кристаллической структуры. Заметим, что наклепом называют упрочнение металла под действием пластической деформации. По мере увеличения степени деформации прочность металла (сплава) возрастает, пластичность, оцениваемая относительн1)1м удлинением, снижается.  [c.51]

Теория электрического пробоя. В основе электрического пробоя твердых диэлектриков лежат электронные процессы ударной ионизации, которые и объясняют пробой твердого диэлектрика импульсами напряжения длительностью 10 —10 сек. В этом процессе исключается влияние диэлектрических потерь и нагрева материала под действием напряжения. Как и в газах, пробой наступает мгновенно, не зависит от времени действия напряжения и связан с разрушением молекулярной и кристаллической структуры материала. При электрическом пробое решающим фактором является напряженность электрического поля, так как именно она обусловливает процесс образования и движения электронов в диэлектрике. Этим и, определяются закономериости изменения пробивного напряжения от времени, температуры и частоты, которые наблюдаются при электрическом пробое.  [c.39]


Теоретическая прочность при сдвиге Ттсор определяет тот уровень напряжений, выше которого происходят деформация и катастрофическое разрушение материала, не содержащего дефектов. Кристаллическая структура такого материала является механически нестабильной. Такое поведение можно описать через скорость деформации как  [c.20]

При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

Поскольку атомы в металлах объединены электронным газом, а кристаллическая структура их.относительно проста, плотно упакованные ряды атомов при нагрузке скользят один по другому особенно легко и разрушение долго не наступает. До того как разорваться, стальной образец довольно сильно растягивается, увеличиваясь в длину. В нeкotopыx  [c.44]

Полные обзоры и сравнительный анализ механических свойств при низких температурах большинства металлов и сплавов, имеюнщх практический интерес, приведены в работах [40—42]. В большинстве случаев в качестве методик оценки разрушения использованы испытания на удар по Шарпи и Изоду, на растяжение образцов с надрезом и испытание на внецентренное растяжение. Пользуясь этими данными, можно получить лишь сравнительные характеристики вязкости. Анализ полученных результатов показал, что характеристики разрушения при низких температурах сплавов на одной и той же основе определяются главным образом пределом текучести, а при сопоставлении сплавов разных систем — кристаллической структурой. С увеличением предела текучести вязкость разрущения обычно понижается вследствие уменьшения доли энергии, приходя-  [c.23]

Изменение предела прочности углеродных материалов в зависимости от температуры их обработки, т. е. по мере повышения стецени упорядочения их кристаллической структуры так же как и модуля упругости, немонотонно. В интервале температуры 2100—2300° С наблюдается экстремум. БылО показано [60, с. 152], что для материалов, обработанных при темлературе >2300° С, усилие разрушения при сжатии а прямо пропорционально определенному . методами рентгеновской дифракции диаметру кристаллитов La в степени —1/2. Иными словами, разрушение графита объяснялось, в соответствии с теорией Гриффитса — Орована, спонтанным распространением трещин но кристаллиту. Справедливо соотношение  [c.56]

Представления, позволяющие описать, по крайней мере по-луколичественно, разрушение углеродных материалов в широком интервале температуры их обработки, изложены в работе [11]. Для этого были использованы полуфабрикаты двух промышленных марок конструкционного графита на основе нефтяного кокса крупной зернистости — КПГ и ГМЗ. Заготовки полуфабриката обрабатывали в контролируемых условиях при температуре от 1300 до 3000° С для получения различной степени совершенства кристаллической структуры исследованных материалов.  [c.56]


Смотреть страницы где упоминается термин Разрушение кристаллической структуры : [c.168]    [c.338]    [c.114]    [c.12]    [c.121]    [c.38]    [c.134]    [c.346]    [c.4]   
Пластичность и разрушение твердых тел Том1 (1954) -- [ c.56 , c.80 , c.82 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические

Разрушение по границам зерен кристаллической структуры



© 2025 Mash-xxl.info Реклама на сайте