Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связи межмолекулярные

В твердом теле (газовая горелка, стальная труба, кирпич) молекулы настолько крепко связаны межмолекулярными силами сцепления, что для изменения их взаимного расположения требуются значительные усилия.  [c.6]

Гибкость ограничивается жесткими участками-сегментами, состоящими из нескольких звеньев главной цепи. Сегменты гибких макромолекул содержат 10—20 звеньев. На гибкость макромолекул оказывает влияние, с одной стороны, тепловое движение атомов, а с другой — энергия связи межмолекулярного взаимодействия. Тепловое движение полимерной молекулы связано с изменением ее формы и состоит во вращении атомов друг относительно друга при сохраняющихся постоянных валентных углах (рис. 9.3). В результате полимерная цепь редко бывает предельно вытянутой и чаще имеет зигзагообразную или глобулярную форму.  [c.218]


Сшитые формы макромолекул (лестничная, сетчатая, рис. 12.2, в, г) свойственны более прочным, нерастворимым и неплавким полимерам, которые склонны к набуханию в растворителях и размягчению при нагреве. Полимеры со сшитой трехмерной формой макромолекулы (рис. 12.2, д) отличаются хрупкостью и высокой стойкостью к внешним воздействиям (неспособны размягчаться и набухать). Макромолекулы полимеров обладают гибкостью, т. е. способностью перемещения их отдельных участков друг относительно друга. Гибкость ограничивается жесткими участками-сегментами, состоящими из нескольких звеньев главной цепи. Сегменты гибких макромолекул содержат 10-20 звеньев. На гибкость макромолекул оказывает влияние, с одной стороны, тепловое движение атомов, а с другой — энергия связи межмолекулярного взаимодействия.  [c.262]

Молекулы связаны межмолекулярными силами.  [c.58]

Свойства твердых тел, в том числе и механические (прочность, упругость, пластичность и др.), определяются их внутренними энергетическими связями, т. е. связями межмолекулярного, межатомного и ионного взаимодействия.  [c.356]

Между молекулами адгезива (полимерная пленка, получаемая из раствора) и субстрата (окрашиваемая поверхность), могут возникать различные силы от слабых дисперсионных до самых больших — сил химической связи. Межмолекулярные силы являются результатом ориентационного, индукционного и дисперсионного взаимодействий. Расстояние между центрами диполей, дипольный момент, поляризуемость, потенциал ионизации, абсолютная температура и постоянная Больцмана являются факторами, опреде-ляюш,ими величину адгезии [3]. Сила взаимного притяжения обратно пропорциональна межмолекулярному расстоянию в седьмой степени. При расстоянии адгезива от субстрата больше 5 А эти силы делаются весьма малыми. Важную роль в адгезии играют также водородные связи между адгезивом и субстратом, величина взаимодействия которых оценивается обычно в 4—7 ккал/моль, но может достигнуть 20—30 ккал/моль [3]. Существует еще один вид специфического межмолекулярного взаимодействия — поляризационная связь, связанная с переносом заряда электрона с орбиты молекулы донора на орбиту акцептора, для чего эти две молекулы должны подойти друг к другу достаточно близко [31. В результате переноса заряда относительно малоактивные молекулы могут приобрести реакционную способность. Адгезионная связь также возможна при образовании между адгезивом и субстратом химических связей — ковалентных, ионных и координационных.  [c.89]

Диапазон температур от 10 до Ю К. В этом диапазоне происходят химические реакции. Энергии химической связи по порядку величины составляют 10 кДж/моль. Энергия связи С—Н равна 412 кДж/моль. При температуре 5 -10 К происходит разрыв химических связей. Межмолекулярные силы, такие, как водородные связи, имеют порядок 10 кДж/моль. Энтальпия испарения воды, которая расходуется на разрыв водородных связей, равна 40 кДж/моль.  [c.228]


Для реальных газов и жидкостей руТ-свойства непосредственно связаны с силами притяжения и отталкивания между молекулами. В настоящее время межмолекулярные силы в реальных газах и жидкостях недостаточно хорошо известны для применения общего уравнения (5-47), поэтому руТ-свойства реальных газов и жидкостей должны быть определены экспериментально и выражены как эмпирическое соотношение.  [c.158]

Полимеры с линейной структурой молекул хорошо растворяются, так как молекулы растворителя могут внедряться в промежутки между макромолекулами и ослаблять межмолекулярные силы. Полимеры с сетчатой структурой нерастворимы, они лишь набухают. При частом расположении связей полимер становится практически нерастворимым и неплавким.  [c.427]

Явление сорбции [36, 61] возникает в результате действия сил притяжения между молекулами газа и атомами на поверхности твердого тела. Различают два вида адсорбции физическую и химическую. В первом случае силами сцепления являются только относительно слабые межмолекулярные силы типа сил Ван-дер-Ваальса, во втором происходит обмен электронами и формируются прочные химические связи между адсорбируемым веществом и твердым телом. Часто бывает так, что физическая адсорбция переходит в химическую, если температура возрастает достаточно для того чтобы обеспечить необходимую энергию активации процессу химической адсорбции.  [c.89]

Клеевые соединения — это соединения неметаллическим веществом посредством поверхностного схватывания (адгезии) и внутренней межмолекулярной связи (когезии) в клеящем слое. Эти соединения в последние годы получили широкое применение.  [c.78]

Различают четыре типа элементарных связей ковалентную, ионную, межмолекулярную и металлическую. В зависимости от преобладающих элементарных связей в кристаллах также различают соответственно четыре группы связей атомные, ионные, молекулярные и металлические.  [c.9]

Кроме двух наиболее типичных химических связей — ковалентной и ионной различают межмолекулярные связи, возникающие вследствие действия универсальных сил Ван-дер-Ваальса, и металлические связи.  [c.10]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]

Таким образом, прочность клеевых соединений определяется химическими и межмолекулярными силами притяжения элементарных частиц клея и склеиваемого материала. В начальной стадии процесса, когда силы взаимодействия, обусловленные смачиванием и межмолекулярным взаимодействием частиц, в основном слабы, прочность клеевого соединения мала. Далее при возникновении химических связей прочность увеличивается.  [c.16]

Внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц. Жидкостям и аморфным телам свойствен лишь ближний порядок, а газы имеют беспорядочное расположение частиц при максимальной внутренней энергии системы. Состояние вещества зависит от температуры Т и значения сил межмолекулярного взаимодействия. Энергия теплового движения или так называемая энергетическая температура частиц равна кТ. При высоких температурах значение кТ превосходит энергию взаимодействия молекул и вещество может быть только газом. Напротив, в кристалле частицы связаны сильно и энергия взаимодействия много больше кТ.  [c.31]

Монолитность сварного соединения при сварке обеспечивается образованием межатомных и межмолекулярных связей между частицами соединяемых материалов на поверхности их контакта.  [c.433]


Различают две группы межатомных и межмолекулярных связей, имеющих электрическую природу 1) физические (ван-дер-ваальсовские) и 2) химические (ионная, ковалентная, металлическая, водородная, донорно-акцепторная и их сочетания). Прочность химических связей (энергия, требуемая для разъединения вещества на отдельные молекулы, атомы или ионы) составляет десятки и сотни килоджоулей, а физических — доли и единицы килоджоуля.  [c.433]

Тем не менее, и в плотных газах, и в жидкостях независимые подсистемы, конечно, существуют. Их можно получить, например, разбив весь объем газа или жидкости на части, линейные размеры которых велики по сравнению с радиусом действия межмолекулярных сил. Ввиду чрезвычайной малости последнего число таких частей можно сделать очень большим. В то же время суммарная энергия молекул, находящихся в пределах каждой из них, будет много больше энергии их взаимодействия с молекулами соседних частей. Потому что это взаимодействие связано с относительно небольшим числом молекул, находящихся вблизи границ раздела между частями. Поэтому движение молекул, принадлежащих разным частям, будет происходить практически независимо друг от друга.  [c.59]

Однако, при тщательной шлифовке, силы трения могут возрасти из-за увеличения межмолекулярных взаимодействий между веществами тела и связи.  [c.238]

Любой конструкционный материал так же, как и вся материя, состоит из атомов или молекул, то есть при определенных условиях в принципе может разрушиться - распасться "в прах" на отдельные молекулы. Для этого в материал должна быть введена энергия, которой хватило бы на разрыв всех внутренних межмолекулярных связей. Тот факт, что материал дискретен (состоит из отдельных частей) предопределяет возможность его разрушения  [c.99]

Ленгмюра уравнение адсорбции - описывает равновесие на однородной поверхности адсорбента при отсутствии межмолекулярных взаимодействий адсорбата. В качестве параметра содержит константу адсорбционного равновесия Ь. Особое значение в теории адсорбции имеет в связи с тем, что его используют при составлении систем уравнений, описывающих адсорбцию на энергетически неоднородной поверхности, адсорбцию с межмолекулярным взаимодействием, полимолекулярную адсорбцию и т.п.  [c.150]

Ряд веществ, молекулы которых содержат гидроксильную группу О—Н, обладают аномальными физико-химическими свойствами (высокая температура плавления и кипения, увеличенное значение молекулярного веса по сравнению с химической формулой и т. д.). Эти явления можно понять, если предположить, что между молекулами таких веществ действуют относительно большие молекулярные силы, приводящие к их объединению в комплексы. Аналогичные явления наблюдаются для молекул, содержащих группы Р—Н, N—Н, а иногда и группы 8—Н, С—Н. Этот тип межмолекулярных взаимодействий получил название водородной связи. Она осуществляется между молекулами, имеющими группы А—Н и некоторыми атомами В, входящими в состав другой молекулы А—Н+В->А—Н---В. Роль партнеров (атомов В) при образовании водородных связей могут играть атомы фтора, кислорода, азота, хлора.  [c.161]

Специфическая роль атома водорода в образовании межмолекулярных связей обусловлена наличием у него единственного электрона. Это позволяет протону сблизиться с атомами, имеющими неподеленные (не участвующие в образовании связей) пары электронов, почти на расстояние их радиусов, располагаясь на прямой, соединяющей их ядра.  [c.161]

В соответствии с (4.10), (4.11) в состоянии равновесия энергия Гельмгольца или энергия Гиббса раствора имеют минимальное значение. Разность между энергией Гельмгольца (или энергией Гиббса) чистых компонентов и энергией Гельмгольца (или энергией Гиббса) раствора равна работе образования раствора. В свою очередь, работа образования раствора тесно связана со структурой раствора и характером межмолекулярных взаимодействий компонентов раствора.  [c.82]

В газах при нормальных условиях межмолекулярные расстояния велики, а силы притяжения малы. Каждая молекула практически не испытывает действия связей с другими молекулами, что в теории позволяет пренебрегать силами взаимодействия между ними. Модель газа, в которой полностью игнорируют силы притяжения между молекулами, называется совершенным газом. Молекулы совершенного газа движутся равномерно и прямолинейно до столкновения друг с другом. Под столкновением понимают резкое изменение направления движения молекул под действием сил отталкивания, которые быстро возрастают при их сближении. Благодаря свободному беспорядочному движению молекул газ может неограниченно расширяться во все стороны и принимает форму сосуда, в котором он заключен. При этом стенки сосуда испытывают удары молекул газа. Сила, с которой молекулы действуют на стенки сосуда, приходящаяся на единицу площади стенки, называется давлением р.  [c.8]

Характер теплового движения молекул в жидкостях более сложный, чем в твердых телах. Согласно упрощенной модели тепловые движения. молекул жидкости представляют нерегулярные колебания относительно некоторых центров. Кинетическая энергия колебаний отдельных молекул в какие-то моменты может оказаться достаточной для преодоления межмолекулярных связей. Тогда эти молекулы получают возможность скачком перейти в окружение других молекул, тем самым поменяв центр колебаний. Таким образом, каждая молекула некоторое время i, называемое временем оседлой жизни , находится в упорядоченном строю с несколькими ближайшими молекулами. Совершив перескок, молекула жидкости оказывается среди новых молекул, выстроенных уже другим образом. Поэтому в жидкости наблюдается только ближний порядок в расположении молекул.  [c.9]

В рассматриваемом случае распределение скоростей линейное. Вследствие действия межмолекулярных связей между движущимися слоями жидкости возникает сила вязкости или внутреннего трения. Ньютон указал на те параметры, от которых она зависит. Для рассматриваемого движения с линейным распределением скоростей по толщине слоя  [c.15]


Линейные макромолекулы (рис. 8.5, а) имеют форму цепей, в которых атомы соединены между собой ковалентными связями. Отдельные цепи связаны межмолекулярными силами, в значительион степени определяющими свойства полимера. Наличие в цепях разветвлений (рис. 8.5, б) приводит к ослаблению межмолекулярных сил и тем самым к снижению температуры размягчения полимера. Пространственные структуры (рис. 8.5, й) получаются в результате химической связи (сшивки) отдельных цепей полимеров либо в результате поликонденсации или полимеризации. Большое значение для свойств сшитого полимера имеет частота поперечных связей. Если эти связи располагаются сравнительно редко, то образуется полимер с сетчатой структурой.  [c.427]

Вдоль цепи полимера действуют химические связи, которые обеспечивают высокую прочность связи цепи. Отдельные же цепи между собой связаны межмолекулярными (Ван-дер-Ваальсов-скими) связями. Эти связи, являясь вторичными, много слабее, чем химические связи. Однако в больших молекулах вследствие большой их длины эти молекулярные связи становятся настолько прочны, что оказывается легче разорвать мелекулу поперек, чем оторвать одну от другой.  [c.140]

Осн. физич. особенностью строения П. является гибкость их цепей, ограниченная размером жестких участков (сегментов), включающих нек-рое число звеньев, из к-рых состоит макромолекула. Сегменты способны поворачиваться относительно соседних сегментов. Другой особенностью П. следует считать резкое 01личие в природе сил взаимодействия влутри цепи и мея<ду различными цепями. Атомы в цепи П. связаны химич. силами, в то время как цепи связаны межмолекулярными силами, к-рые значительно слабее химических. Особенности строения П. и широкие возможности непрерывно изменять их св-ва за счет изменения структуры делают область применения II. в технике практически неограниченной.  [c.17]

Свойства твердых тел, в том числе и механические (прочность упругость, пластичность и др.), определяются их внутренними энергетическими связями, т. е. связями межмолекулярногО, меж-частичного (межатомного, ионного) взаимодействия. В металлах, которые относятся к твердым кристаллическим телам, внутренние связи определяются единым энергетическим полем ионизированнкх атомов (находящихся в узлах кристаллической решетки) и подвижных электронов. Группы атомов, расположенные с определенной ориентацией кристаллической решетки, образуют отдельные зерна или кристаллы металла. По границам между зернами кр№ сталличесжая решетка, как правило, искажена. Большинство металлов являются поликристаллическими телами, свойства которых определяются как свойствами самих зерен, так и свойствами границ между зернами.  [c.4]

Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цени и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях. На физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При 17лотиой упаковке возникает более сильное межмолекулярное притяжение, что приво,цит к повышению плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими ДЛЯ получения волокон и пленок (например, полиэтилен, полиамиды и др.).  [c.21]

Задача о диффузии в газовой среде решается методами кинетической теории газов, так как в этом случае не требуется особой энергии активации для проникновения одного газа в другой. Если диффузия происходит в конденсированных фазах (жидкая, твердая), то в этом случае для перемещения частиц диффузанта требуется энергия активации, так как в жидкости и в кристалле частицы между собой связаны значительной энергией межатомного или межмолекулярного взаимодействия, находясь на малых расстояниях друг от друга. Скорость диффузии в этом случае будет значительно меньше.  [c.296]

Концентрация парамагнитных соединений, фактически, является управляющим параметром для характера протекания процесса карбонизации. При достижении критического значения концентраиш) начинается процесс структурирования. Известно [25], что теплоты смешения являются основными энергетическими характеристиками раствора, поскольку их величины непосредственно связаны с энергиями межмолекулярнь х взаимодействий в жидкой фазе. Каждая пара индивидуальных химических соединений имеет определенную величину энергии, которая выделится/поглотится при смешении чистых веществ.  [c.157]

В основе количественного анализа по спектрам комбинационного рассеяния света лежит пропорциональная зависимость между интенсивностью комбинационных линий и количеством молекул в единице объема (см. (3.11), (3.48)). При наличии смеси веществ интенсивность линий каждого из компонентов, как правило, прямо пропорциональна его концентрации. В растворах эта пропорциональность иногда нарушается из-за межмолекулярного взаимодействия, которое изменяет симметрию молекулы и производную ее полшзизуемости dajdQi, что оказывает влияние на интенсивность комбинационных линий. Сильное изменение частоты, интенсивности и ширины линий комбинациО Н НОго рассеяния света (так же как и полос ИК-спектра поглощения) наблюдается, например, при образовании межмолекулярной водородной связи в индивидуальных жидкостях (вода, спирты и др-), а также в растворах.  [c.138]

Определение критической точки. Существование критической точки обусловлено наличием молекулярных сил. Вследствие этого параметры критической точки представляют собой, как уже отмечалось ранее, важнейшие характеристики вещества, которые в обобщенной количественной форме выралсают эффект действия межмолекулярных сил. Так, например, критическая температура самым прямым образом связана с величиной потенциальной энергии взаимодействия молекул. Для сжижения газа, осуществляющегося при температурах, начиная с критической и ниже, необходимо, чтобы энергия связи молекул была не меньше средней энергии теплового движения их, вследствие чего значение потенциальной энергии Но взаимодействия двух молекул в точке минимума о (см. рис. 6.8) должно быть примерно равно ЙТД более точным является соотношение  [c.238]

Характер теплового движения молекул в жидкостях сложнее, чем в твердых телах. Согласно упрощенной, но, по-видимому, качественно верной модели, тепловые движения молекул жидкости представляют нерегулярные колебания относительно некоторых центров. Кинетическая энергия колебаний отдельных молекул в какие-то моменты может оказаться достаточной для иреодоления межмолекулярных связей. Тогда эти молекулы получают возможность скачком перейти в окружение других молекул, тем самым поменяв центр колебаний. Таким образом, каждая молекула некоторое время называемое временш оседлой жизни , находится в упорядоченном строю с несколькими ближайшими соседками . Совершив перескок, молекула жидкости оказывается среди новых молекул, выстроенных уже другим образом. Поэтому в жидкости наблюдается только ближний порядок в расположении молекул. Скачки молекул совершаются хаотически, новое место никак не предопределено прежним. Непрерывно и в большом количестве совершающиеся скачкообразные переходы молекул с места на место обеспечивают диффузию молекул и текучесть жидкостей. Если на границе жидкости приложена сдвигающая сила, то, как и в газах, появляется преимущественная направленность скачков и возникает течение жидкости в направлении силы.  [c.11]


Ha межфазной границе в слое толщиной равном по порядку радиусу межмолекулярных взаимодействий (бт= 10 м), молекулы взаимодействуют не только с молекулами своей фазы, но и с близлежащим слоем молекул другой фазы. Поэтому в этом слое физико-химические свойства вещества и его реакция могут заметно отличаться от свойств этого же вещества и этой же фазы па существенно больших, чем расстояния от межфазной границы, но все еще малых по сравнению с размерами неоднородностей (диаметром капель, пузырьков, частиц, пор и т. д.) расстояниях. В связи с этим, следуя Гиббсу, целесообразно выделять эти очень тонкие поверхностные зоны раздела фаз и рассматривать их отдельно, учитывая, что их толщины чрезвычайно малы по сравнению с размерами в двух других измерениях, а следовательно, малы п их объемы и массы по сравнению с обт,емами неоднородностей (капель, пузырей, частиц и т. д.). Таким образом, приходим к понятию поверхностной фазы, которую будем называть Z-фазой, массой, импульсом и кинетической энергией которой можно пренебречь. Влияние поверхностной фазы в уравнении импульсов сводится к наличию дополнительных усилий (поверхностного натяжения), распределенных вдоль замкнутой линии 6 L, которая ограничивает рассматриваемый элемент межфазной поверхности 6 iSia. Главный вектор этих усилий, отнесенный к единице межфазной поверхности, равен  [c.43]


Смотреть страницы где упоминается термин Связи межмолекулярные : [c.17]    [c.14]    [c.92]    [c.28]    [c.173]    [c.283]    [c.70]    [c.88]    [c.7]    [c.8]    [c.172]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.337 , c.339 ]



ПОИСК



Прочность межмолекулярных связей

Химическая связь межмолекулярная



© 2025 Mash-xxl.info Реклама на сайте