Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка и методы решения задач плоской теории упругости

Постановка и методы решения задач плоской теории упругости  [c.40]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]


В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]

В третьей части учебника дается постановка задачи теории упругости и методы ее решения. Рассматривается плоская задача и изгиб тонких пластин, а также основы теории пластичности и ползучести. Такое объединение разделов механики деформируемого твердого тела позволяет более рационально использовать отведенное учебным планом время, а главное—добиться более глубокого понимания студентами внутренних связей этой науки.  [c.3]

Методы граничных элементов, рассмотренные в предыдущих двух главах, предназначены для решения общих краевых задач теории упругости в плоской постановке. Как известно, такие задачи характеризуются плоской областью R, ограниченной контуром С. Область R может быть либо конечной (область внутри контура С), либо бесконечной (область вне контура С), как показано на рис. 6.1. В любом случае, с каждой точкой Q контура С мы связываем касательные и нормальные смещения и м и касательные и нормальные напряжения (или усилия) (Т и (Т . Эти величины задаются, как обычно, относительно локальной системы координат S, п точки Q  [c.111]


В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

В случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами (волокнами конечных размеров в продольном направлении), взаимодействие между соседними волокнами может реализоваться как в плоскости поперечного сечения (между соседними параллельными волокнами), так и в продольном направлении (между соседними волокнами в направлении действия сжимающих напряжений). Исследование таких проблем в рамках трехмерной линеаризированной теории устойчивости деформируемых тел существенно усложняется, так как в этом случае получаем неоднородное (двухмерное или трехмерное) докритическое состояние вполне очевидно, что в рассматриваемых задачах конкретные результаты можно получить лишь при помощи современных численных методов. При вышесказанном подходе рассматриваемая проблема начала разрабатываться лишь в последние два года. Так, в случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами, при малой концентрации наполнителя приходим к простейшей эталонной задаче об устойчивости одного короткого волокна (волокна конечных размеров в продольном направлении) в бесконечной матрице при сжатии па бесконечности усилиями постоянной интенсивности, направленными вдоль волокна. Заметим, что в случае одного короткого волокна также получаем задачу с неоднородным докри-тическим состоянием конкретные результаты даже в этой эталонной простейшей задаче, характерной для рассматриваемой проблемы, получаются с привлечением только численных методов. При вышеизложенной постановке в рамках плоской задачи при моделировании матрицы и волокна линейно-упругим сжимаемым телом ряд конкретных результатов изложен в [8, 9]. Настоящую статью можно рассматривать как продолжение исследований [8] для однонаправленных волокнистых композитных материалов, армированных короткими волокнами, применительно к материалам с малой концентрацией наполнителя, когда можно выделить два соседних волокна (вдоль направления действия сжимающих напряжений), для которых (в силу близкого их размещения) необходимо учитывать взаимодействие двух волокон при потере устойчивости. Исследование проводится также в рамках плоской задачи при моделировании матрицы и волокон линейно-упругим сжимаемым телом при этом приводится сравнительно краткая информация о применяемом численном методе решения задач и его реализации, поскольку более подробно указанные вопросы могут быть изложены в публикации в другом издании. Основное внимание в настоящей статье уделено анализу полученных закономерностей о взаимовлиянии двух коротких волокон в матрице при потере устойчивости  [c.332]


Задача (й, р) в упругой постановке изучалась в [13], где исследовались вопросы корректности и методы решения, связь с задачей аналитического продолжения и с задачей тензометрии. Показано, что эта задача относится к условно корректным и может быть сведена к задаче Коши для бигармонического уравнения (в плоском случае) или для уравнений Ламе, либо для системы Бельтрами-Митчела (в пространственном случае). В [14-17] использовалось представление общего решения теории упругости через голоморфный вектор, удовлетворяющий системе уравнений Моисила-Теодореску это позволило свести задачу (w, р) к задаче продолжения голоморфного вектора, которая, в свою очередь, приведена к интегральному уравнению, численное решение которого строилось без процедур регуляризации, что обосновано сопоставлением с точным решением тестовой задачи. В [12, 18] рассматривалась идеально упругопластическая задача (w, р), где также исследовались вопросы корректности, построения алгоритмов решения и их численной реализации на конкретных примерах (нахождение пластических зон вокруг эллиптических и круговых отверстий при полном и неполном охвате  [c.778]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]

Изложенные выше исследования, охватывающие смешанные задачи теории функции комплексного переменного и их приложения к плоским контактным задачам теории упругости, позволяют сделать вывод о том, что к началу 50-х годов разработка методов решения таких задач для однородной области была в основном закончена. Дальнейшие исследования в этом направлении были связаны как с постановкой физически новых задач, так и с решениями смешанных задач для областей гораздо более сложной геометрии, что, в свою очередь, привело к разработке таких математических методов решения этих задач, как интегральные преобразования и парные интегральные уравнения, парные тригонометрические ряды, интегральные и иитегро-дифференциальные уравнения и системы уравнений и др.  [c.17]


Р. Я. Ивановой [23] была рассмотрена задача о качении вязкоупругого цилиндра по основанию из того же материала. Задача решалась в плоской постановке при исходных физических интегральных зависимостях наследственного типа. Предполагалось, что движение катка начинается в момент времени —оо и продолжается с постоянной скоростью объемное последер вие отсутствует. Путем привлечения принципа Вольтерра задача решалась в рамках теории упругости с помощью метода Н. И. Мусхелишвили [38]. Полученные при этом два сингулярных уравнения типа Фредгольма содержат реологический оператор, который выражается через резольвенту ядра наследственности при сдвиге. После введения подвижной системы координат и замены дуги окружности катка дугой параболы одно из этих интегральных уравнений, которое соответствует мнимой части соотношения Мусхелишвили, удалось привести к форме, даюшей возможность решить его по методу Карлемана. Для конкретности резольвента ядра наследственности была взята в внде совокупности простых экспоненциальных ядер. Даже в этом случае получение численного результата было связано со значительными вычислительными трудностями. Решение выписано в квадратурах вычисление их осуществлялось приближенно применительно к материалам, обладающим достаточно большим временем релаксации.  [c.403]

В седьмой главе разработанные методы решения динамических контактных аадач теории упругости с одчостороннимн ограничениями для тел с трещинами использованы при решении задачи о взаимодействии плоской волны растяжения-сжатия с трещиной конечной длины в плоскости. Приведены уравнения, необходимые для математической постановки задачи. Эти уравнения являются следствием общих уравнений, полученных в предьщущих главах. Исследована зависимость точности решения от аппроксимации по пространственным координатам и по времени, а также от количества членов ряда Фурье разложения компонент напряжен-но-деформированиого состояния. Приведены также численные результаты и исследованы количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещины.  [c.7]

Разработанные в предыдущей главе методы решения динамических контактных задач теории упругости с односторонними ограничениям для тел с трещинами используются здесь,при решении задачи о взаимодействии гармонической плоской волны растяжения — сжатия с трещиной конечной длины в плоскости. Как показано в работах [ 105, 130, 134], для корректной формулировки таких задач необходимо учитывать контактное взаимодействие берегов трещины. Приведены уравнения и формулы, дающие математическую постановку рассматриваемой задачи. Эти уравнения являются следствием общих уравнений, полученных в предыдущих главах. Приведены также численные примеры и иследованьь количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещины.  [c.159]

Разработанные в предьщущих главах методы решения динамических контактных задач теории упругости с односторонними ограничениями для тел с трещинами в этой главе используются при решении задачи о взаимодействии плоской волны растяжения — сжатия с двумя колинеарными трещинами конечной длины в плоскости. Как показано [106, 135, 139], для корректной формулировки этой задачи необходимо учитывать контактное взаимодействие берегов тре1цины. Приведены уравнения и формулы, дающие математическую постановку рассматриваемой задачи. Эти уравнения являются следствием общих уравнений, полученных в пятой и шестой главах. Используются также некоторые формулы и результаты седьмой главы. Приведены численные результаты и исследованы количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещин.  [c.185]

Исследование упругой устойчивости пластинок под нагрузками различных типов и при различных краевых условиях было введено в практику судостроительного проектирования впервые при сооружении русских дредноутов ). Постановка линейного корабля в док на одном лишь вертикальном киле предъявляет высокие требования прочности и упругой устойчивости к поперечным переборкам, В связи с этим была разработана теория устойчивости пластинок, усиленных ребрами жесткости, о которой мы упоминали выше (см. стр. 495), а также поставлена серия испытаний на моделях размерами 4,5 X 2,1 м. В расчете на изгиб плоских перекрытий из соединенных между собой продольных и поперечных балок был использован метод Рэлея—Ритца ), позволивший получить для этой задачи достаточно точные решения.  [c.526]


Смотреть главы в:

Механика в ссср за 50 лет Том3 Механика деформируемого твердого тела  -> Постановка и методы решения задач плоской теории упругости



ПОИСК



656 —• Постановка задачи

Задача и метод

Задача упругости

Задачи и методы их решения

Задачи теории упругости

Задачи теории упругости плоская

К постановке зг ачи

К упругих решений

М тох решения плоской задачи

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Методы плоское

Методы решения плоских задач

Плоская задача

Постановка задачи и метод решения

Постановка задачи теории упругости

Постановка плоских задач теории упругости

Решение задачи упругости

Решения метод

Решения плоские

Теории Задача плоская

Теория Метод сил

Теория Методы решения задач

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте