Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика твердого тела. Уравнения Эйлера

Динамика твердого тела. Уравнения Эйлера. Переходим ко второму условию равновесия твердого тела, свободно движущегося в пространстве сумма всех моментов должна обратиться в нуль.  [c.129]

Общие уравнения пространственного движения вертолета в связанной системе координат представляют собой обычные уравнения динамики твердого тела (уравнения Эйлера) и кинематические уравнения связи (1).  [c.60]


Рис. 3-4-3. Возмущение константы площадей интегрируемого случая Горячева-Чаплыгина в динамике твердого тела (уравнения Эйлера-Пуассона). х-Ю. у 0, г 10, ( >од(4, 4, ) , ц 4, Е 50, Н-1. Рис. 3-4-3. Возмущение константы площадей <a href="/info/709637">интегрируемого случая</a> Горячева-Чаплыгина в <a href="/info/34938">динамике твердого тела</a> (<a href="/info/2657">уравнения Эйлера</a>-Пуассона). х-Ю. у 0, г 10, ( >од(4, 4, ) , ц 4, Е 50, Н-1.
Решение обратных задач динамики твердого тела, вращающегося вокруг неподвижной точки, представляет значительные трудности. Дифференциальные уравнения движения, т. е. динамические уравнения Эйлера, решаются в квадратурах только в исключительных случаях.  [c.542]

Уравнения динамики твердого тела. Примем за обобщенные координаты тела три координаты х ., у , его центра масс и три угла Эйлера ф,г1), б. Движение центра масс описывается уравнением (9) теоремы об изменении количества движения. Для твердого тела это уравнение приводится к виду  [c.49]

Пересказывать содержание этого труда означает повторять то, что до сих пор составляет основное содержание главы Динамика твердого тела в учебниках механики. Характерно для Эйлера, что он нередко идет от движения к силам , методически отделяет кинематическую часть от динамической, систематически использует, помимо неподвижной, подвижную систему координат, связанную с телом,— систему главных осей инерции. Наконец, составив достаточно сложного вида уравнения вращательного движения, Эйлер обнаруживает, что они значительно упрощаются, если ввести в каче-  [c.154]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]


В динамике твердого тела роль переменных ту, могут играть компоненты вектора угловой скорости тела в проекции на связанные с ним оси. В этом случае уравнения Пуанкаре переходят в уравнения Эйлера.  [c.264]

Исследования Ковалевской, Ляпунова и других авторов в динамике твердого тела показали, что общее решение уравнений движения представляется однозначными функциями времени только в классических случаях Эйлера, Лагранжа и Ковалевской, как раз тогда, когда существует дополнительный однозначный интеграл. Долгое время оставалось неясным, является ли это обстоятельство случайным совпадением, или же в его основе лежат какие-либо глубокие причины. В этой главе методом малого параметра Пуанкаре доказано, чго именно существование бесконечного числа неоднозначных решений препятствует появлению нового однозначного аналитического интеграла в общем случае.  [c.107]

Развитие результатов Эйлера в области динамики твердого тела было проведено в дальнейшем главным образом русскими учеными . Знаменитая русская женщина-математик С. В. Ковалевская (1850—1891) обнаружила новый случай интегрируемости уравнений Эйлера в динамической задаче о движении твердого тела около неподвижной точки. В своей работе Ковалевская задается целью отыскать такие классы движений тяжелого твердого тела, для которых проекции мгновений угловой скорости на подвижные оси выражаются в виде некоторых функций времени, имеющих особые точки только в форме полюсов первого порядка. Этим путем она нашла решение новой, труднейшей задачи о движении несимметричного гироскопа, и ее работа вызвала появление обширной литературы как в нашей стране, так и за границей.  [c.33]

На основании теоремы об изменении кинетического момента в форме (32) можно получить динамические уравнения движения для тела переменной массы, имеющего одну неподвижную точку. Эти уравнения будут естественным обобщением уравнений Эйлера, хорощо известных в динамике твердого тела постоянной массы. Если твердое тело имеет одну закрепленную  [c.106]

ЭЙЛЕРА ДИНАМИЧЕСКИЕ УРАВНЕНИЯ — дифференциальные ур-ния движения твердого тола, имеющего одиу неподвижную точку. См. Динамика твердого тела, ур-пия (4).  [c.434]

Динамика абсолютно твердого тела. Уравнение поступательного движения и уравнение моментов. Вращение твердого тела вокруг неподвижной оси. Центр удара. Динамика плоского движения твердого тела. Движение аксиально симметричного твердого тела, закрепленного в центре масс. Уравнения Эйлера.  [c.37]

В динамике твердого тела Эйлер разработал теорию моментов инерции и получил формулу распределения скоростей в твердом теле. В 1750 г он получил уравнения движения в неподвижной системе координат, которые оказались малопригодными для применения. В цикле работ 1758-1765 гг. Эйлер впервые ввел подвижную систему координат, связанную с телом, и получил уравнения Эйлера-Пуассона в окончательной форме (вклад Пуассона, отразившийся в названии, видимо, состоит в систематическом их изложении в своем известном курсе механики). В них также используются углы Эйлера, получены кинематические соотношения, носящие имя Эйлера, а также указан случай интегрируемости при отсутствии поля тяжести. Этот случай Эйлер доводит до квадратур и разбирает различные частные решения. Отметим также вклад Эйлера в прикладные науки — кораблестроение, артиллерию, теорию турбин, сопротивление материалов.  [c.20]

Козлов, Валерий Васильевич (род. 1.01.1950) — русский математик и механик, академик РАН (с 2000 г). В цикле работ, объединенных в монографии Методы качественного анализа в динамике твердого тела (МГУ, 1980), доказал несуществование аналитических интегралов уравнений Эйлера-Пуассона, а также указал динамические эффекты, препятствующие интегрируемости этих уравнений — расщепление сепаратрис, рождение большого числа невырожденных периодических решений. Эти исследования закрыли проблему Пуанкаре, поставленную им в Новых методах небесной механики (т. 1), а также открыли новую эпоху в динамике твердого тела, в которой на первый план вышли методы качественного исследования, а не поиск частных решений заданной алгебраической структуры.  [c.26]


Замечание. В динамике твердого тела для поиска интегралов, частных решений и анализа устойчивости обычно используется алгебраическая форма уравнений движения. Она также является предпочтительной при их численном интегрировании, вследствие того, что каноническая форма содержит особенности, связанные с вырождением локальных переменных в отдельных точках, например, углов Эйлера в полюсах сферы Пуассона, см. 2, 3).  [c.31]

Существует аналогия между уравнениями Эйлера-Пуассона и уравнениями, описывающими равновесие бесконечно тонкого упругого цилиндра — нити, впервые обнаруженная Г. Кирхгофом [85]. Эта аналогия в некотором смысле позволяет пространственно интерпретировать динамику твердого тела, заменяя исследование эволюции системы во времени анализом формы упругой нити, точнее — положения связанного с кривой репера в абсолютном пространстве.  [c.87]

T. e. / i = 0 и /с2 = 0 являются инвариантными соотношениями. Отметим, что если линейные соотношения типа ki = М3 = О существуют, например, для случаев типа Лагранжа и Гесса (имеются в виду уравнения Эйлера-Пуассона), то кубичные инвариантные соотношения в динамике твердого тела, видимо, совсем не рассматривались.  [c.346]

Заменим в этих формулах tii, , Pi, qu h их выражениями из уравнений (9.8) и (9.9), а производные от направляющих косинусов их выражениями, которые можно взять из теории динамики твердого тела или вывести непосредственно из формул (9.6) простым дифференцированием и последующей заменой производных от эйлеровых углов их выражениями, получаемыми из кинематических уравнений Эйлера (9.10), которые, как легко видеть, дают  [c.411]

История интегрирования этого уравнения началась с работы Эйлера и изложена в литературе по динамике твердого тела. Однако компактная и конструктивная тензорная запись (2.7) пока не получила должного распространения.  [c.34]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Применяя общие теоремы динамики, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, динамические уравнения Эйлера, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения  [c.544]

При решении задач с помощью общих теорем динамики, а также при применении дифференциального уравнения вращения твердого тела вокруг неподвижной оси, дифференциальных уравнений плоского движения твердого тела и динамических уравнений Эйлера силы разделяются на внешние и внутренние.  [c.545]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]


Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В основе всей динамики твердого тела лежат уравнения Эйлера, предложенные им в 1767 г. Уравнения эти определяют движение твердого тела около неподвижной точки и имеют место при произвольном движении твердого тела, так как самое общее движение твердого тела может быть представлено в виде суммы переносного поступательного движения, определяемого движением центра масс тела, и относительного движения тела вокруг центра масс. Центр масс твердого тела движется так, как если бы в нем была сосредоточена вся масса тела и приложены все действующие на тело силы. Относительное движение твердого тела вокруг центра масс определяется теоремой об изменении момента количества движения относительно осей Кёнига.  [c.368]

В динамике твердого тела много результатов получил Д. Гриоли [18, 27]. Наиболее суш ественный из них относится к построению в 1947 г. нового решения уравнений Эйлера-Пуассона, характеризуюш,его регулярную прецессию тяжелого твердого тела относительно наклонной оси.  [c.239]

Вернемся к динамике твердого тела. Теорема С. В. Ковалевской о мероморфных общих решениях была существенно усилена А. М. Ляпуновым [42] и Г. Г. Аппельротом [43], доказавшим, что общее решение уравнений движения тяжелого твердого тела вокруг неподвижной точки представляется однозначными (е частности, мероморфными) функциями времени только в классических случаях Эйлера, Лагранжа и Ковалевской. В этих случаях дополнительные интегралы, как и классические интегралы, являются многочленами, т. е. рассматриваемые как функции многих комплексных переменных, они однозначны в прямом произведении комплексных плоскостей. Эти результаты указывают на целесообразность расширения задачи Пенлеве какова связь между существованием новых однозначных интегралов и однозначностью общего решения  [c.128]

По форме уравнения Аппеля (10), как показывается ниже, ничем не отличаются от уравнений Эйлера—Лагранжа (1.13). Применение тех или иных уравнений— вопрос вычислительного удобства. Пользование уравнениями Эйлера — Лагранжа предполагает предварительное нахождение трехиндексных символов кинетическая энергия должна вычисляться без учета наличия неголономных связей, что усложняет структуру этого выражения само написание уравнений требует внимания в расстановке индексов. При применении уравнений Аппеля основная трудность состоит в вычислении энергии ускорений требуется внимание, чтобы не упустить слагаемых, содержащих квазиускорения. При рассмотрении неголономных систем дело облегчается возможностью учитывать наличие этих связей. Не следует переоценивать значения правил (4.10.4) и (4.10.12) составления энергии ускорений 5 по кинетической энергии Т, так как применение второго из них требует знания трехиндексных символов и выражения Г, вычисленного при отброшенных связях, а применение первого для составления уравнений Аппеля в форме (5.18) воспроизводит выкладки, которые надо проделать при написании уравнений Лагранжа второго рода (если неголономные связи отсутствуют). Важное значение имеют в задачах динамики твердого тела правила составления 5, данные в п. 4.11. Уравнения Аппеля легко запоминаемы, а процесс  [c.397]

Интересно заметить, что связь между лагранжевой и гамильтоновой формой понятна большинству механиков только в канонической записи. Так в книге [21] гамильтонова форма уравнений динамики твердого тела считается заведомо установленной из некоторых не вполне естественных соображений, в частности, со ссылкой на работу [133], в которой реально автор, не зная общего формализма динамических уравнений, даже переоткрывает углы Эйлера и сопряженные им импульсы. Далее в [21] доказывается несколько странных теорем, что из гамильтоновой формы можно получить лагранжеву, при этом, конечно, возникает некоторая путаница, так как пуассонова коммутация компонент момента с импульсами и направляющими косинусами одинакова, и одни и те же уравнения Кирхгофа можно представлять себе как часть импульсных уравнений на группе (3) — уравнения Эйлера - Пуанкаре для М, р, которая в случае отсутствия потенциала отделяется от позиционных уравнений (для направляющих косинусов), а с другой стороны — как гамильтоновы уравнения на 30(3), при этом необходимо интерпретировать компоненты импульсивной силы р как направляющие косинусы. В этом, кстати, заключается аналогия Стеклова [272] (см. также 4 и гл. 3, 1).  [c.38]

Функции Рг и Р2 являются интегралами уравнений (1.6) с любым гамильтонианом Н. Для уравнений Эйлера-Пуассона они имеют естественное физическое и геометрическое происхождение. Интеграл Р представляет собой проекцию кинетического момента на неподвижную вертикальную ось и называется в динамике твердого тела интегралом площадей, он связан с симметрией относительно вращений вокруг неподвижной вертикальной оси. Происхождение интеграла Р2 = onst чисто геометрическое — это квадрат модуля единичного орта вертикали. Для действительных движений значение константы этого интеграла равно единице 2 = 7 = 1-  [c.86]

Устойчивые и неустойчивые периодические решения уравнений Эйлера-Пуассона для случая Горячева-Чаплыгина располагаются на бифуркационной диаграмме на ветвях III и II соответственно (см. рис. 46, 53-56). Численные исследования показывают, что движения полной системы в абсолютном пространстве, соответствующие этим решениями, также периодические при любых значениях энергии (см. рис. 55, 56). Этот факт ранее, по-видимому, не отмечался в литературе и отражает специфику динамики твердого тела на нулевой постоянной площадей (М, 7) = О (ср. с решениями Делоне для случая Ковалевской, 4 п. 3). Вместо формального доказательства мы приводим серию рисунков, наглядно подтверждающих это утверждение. На них представлены траектории системы как на сфере Пуассона, так и траекторий апексов в абсолютном пространстве, большинство из них достаточно сложны.  [c.141]


Аналогично уравнениям Кирхгофа, можно придать механический смысл уравнениям (2.3), (2.7), если гамильтониан Н, помимо квадратичных, содержит линейные слагаемые. В зависимости от физических постановок, описанных в первом пункте, их можно интерпретировать по-разному. Так для динамики твердого тела с жидкостью это — наличие многосвязных полостей в теле, для четырехмерного волчка Эйлера — добавление уравновешенного четырехмерного гиростата, для твердого тела в искривленном пространстве — добавление уравновешенного трехмерного гиростата (соответствующий вывод см. 2 гл. 5), для твердого тела на в жидкости — многосвязность твердого тела, движущегося в жидкости, для цепочки спинов — постоянное внешнее магнитное поле, в которое помещена цепочка спинов.  [c.197]

Приводимые здесь динамические и кинематические уравнения Эйлера несколько разнятся от встречающихся в динамике твердого тела, что объясняется специальным рыбором направдений отсчетэ эйлеровых углов, приняты ( в астрономии.  [c.752]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]


Смотреть страницы где упоминается термин Динамика твердого тела. Уравнения Эйлера : [c.597]    [c.186]    [c.345]    [c.14]    [c.88]    [c.240]    [c.518]    [c.596]    [c.284]    [c.348]    [c.283]   
Смотреть главы в:

Вариационные принципы механики  -> Динамика твердого тела. Уравнения Эйлера



ПОИСК



70 - Уравнение динамики

Динамика твердого тела

Динамика твердых тел

Уравнение Эйлера

Уравнения Эйлера динамики твердого тела

Уравнения Эйлера динамики твердого тела

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте