Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение твердого тела вокруг относительное

Рассмотрим движение твердого тела вокруг неподвижной точки в поле силы тяжести. С помощью ортонормированных векторов, е з, вз, жестко связанных с телом, зададим направления главных осей инерции относительно неподвижной точки О. Соответственно Л, В, С суть главные моменты инерции. Потребуем, чтобы тело было динамически симметричным (эллипсоид инерции был эллипсоидом вращения). Например, пусть  [c.478]


Из него следует, что закон движения твердого тела вокруг оси определяется только моментом активных сил относительно осп вращения. Этот закон [ф = ф( ) найдем, интегрируя уравнение  [c.177]

По формуле (59) вычисляют момент сил инерции относительно оси вращения при вращательном движении твердого тела вокруг неподвижной оси. Этот момент создают касательные силы инерции, так как нормальные силы инерции для каждой точки тела пересекают ось вращения и, следовательно, момента не создают.  [c.346]

Для перетирания руды в рудниках применяется чилийская мельница, схема которой изображена на рис. 81. Бегуны ЛГ — тяжелые чугунные колеса со стальными обода-ми — катятся по дну неподвижной чаши, вращаясь вокруг вертикальной оси 00 с угловой скоростью и вокруг собственных осей ОСи ОС Сусловыми скоростями й)л. Очевидно, (0 — скорость переносного вращательного движения, а скорости (1), — скорости относительных вращательных движений колес. Движение каждого бегуна—это движение твердого тела вокруг неподвижной точки О. Следовательно, мгновенная ось будет проходить через точку О и некоторую точку А, лежащую на общей образующей конической поверхности бегуна и  [c.180]

Обычно полюс выбирают в точке тела, движение которой определяется проще всего. Такой точкой является центр инерции, поскольку теорема о движении центра инерции позволяет непосредственно составить дифференциальные уравнения его движения. Теорема об изменении кинетического момента в относительном движении системы позволяет составить дифференциальные уравнения движения твердого тела вокруг его центра инерции. Для определения движения твердого тела пользуемся неподвижной системой координат Охуг и двумя подвижными Сх у 21 и С г (рис. 46). Начало подвиж-  [c.399]

Работа при вращательном движении твердого тела вокруг неподвижной оси Z равна работе суммы моментов всех сил, приложенных к телу, относительно этой оси,  [c.249]

Наиболее простой вид полученные уравнения движения твердого тела вокруг неподвижной точки имеют, когда за подвижные оси ж, г/, Z выбраны главные оси эллипсоида инерции, построенного относительно неподвижной точки О. В этом случае  [c.183]

В исключительных случаях может оказаться, что тело А заканчивается острием т, которым оно скользит по телу В наподобие волчка, скользящего по плоскости. В этом случае тело А всегда касается тела В одной и той же точкой т, и если относительная скорость точки т по отношению к В становится равной нулю и такой остается, то в этом случае применимы законы трения скольжения в состоянии покоя, и движение тела А относительно тела В есть движение твердого тела вокруг неподвижной точки.  [c.107]


Пример. Движение твердого тела вокруг неподвижной оси. Вспомним, что для того, чтобы твердое тело, движущееся вокруг неподвижной оси Ог, было в равновесии, необходимо и достаточно, чтобы сумма моментов сил относительно оси равнялась нулю. На основании этого для того, чтобы написать уравнение движения тела вокруг оси Ог, нужно написать, что заданные силы и силы инерции находятся в равновесии в силу имеющейся связи, т. е. что сумма моментов этих сил относительно оси Ог равна нулю  [c.263]

Наиболее простым и очень важным случаем является тот, когда момент внешних сил относительно неподвижной точки равен нулю. Тогда говорят, что имеет место случай Эйлера движения твердого тела вокруг неподвижной точки. Этот случай, очевидно, возможен, когда внешних сил нет совсем или тогда, когда внешние силы, приложенные к телу, приводятся к равнодействующей, проходящей через неподвиж-  [c.189]

При вращательном движении твердого тела вокруг оси мощность равна произведению момента относительно оси на угловую скорость со  [c.201]

Наряду с этим при решении задач в этом параграфе может быть использован и другой способ. Движение твердого тела вокруг неподвижной точки О с угловой скоростью Шг примем за относительное движение, а движение с угловой скоростью примем за переносное движение. Тогда определение скоростей точек твердого тела может быть произведено на основании теоремы сложения скоростей  [c.611]

Из условия равновесия сил в каждой точке твердого тела вытекают условия равновесия сил для тела в целом (т. е. равенство нулю их главного вектора R и главного векторного момента Мо относительно некоторого центра О). Наоборот, из условий равновесия сил для тела в целом не вытекает условия их равновесия в каждой точке тела если = Мо — О, т. е. твердое тело движется по инерции, то его центр тяжести С — либо в покое, либо движется прямолинейно и равномерно, а движение тела относительно точки С представляет эйлеров случай движения твердого тела вокруг неподвижной точки (гл. X, 2), при котором точки тела могут двигаться с ускорением, откуда вытекает Р + N Ф 0. В общем случае материальной системы из условий = Мо = О нельзя сделать никаких заключений ни о равновесии сил в каждой точке системы, ни о равновесии самой системы например, если рассмотреть всю Солнечную систему и пренебречь притяжением звезд, то для нее выполняются условия == Мо = О, а вместе с тем отдельные небесные тела Солнечной системы или тела у поверхности планеты могут двигаться по тем или иным законам.  [c.347]

А. Уравнение Эйлера. Рассмотрим движение твердого тел вокруг неподвижной точки О. Пусть М — вектор кинетического момента тела относительно О в теле, О — вектор угловой скорости в теле, А — оператор инерции (Лй = М) векторы й, М принадлежат подвижной системе координат К ( 26). Вектор кинетического момента тела относительно О в пространстве ш = = ВМ сохраняется при движении ( 28, Б).  [c.127]

Из теоретической механики известно, что при плоскопараллельном движении твердого тела (звена механизма) это движение в каждый момент времени может быть представлено как вращение вокруг некоторой точки, называемой мгновенным центром вращения. В механизмах мы можем рассматривать движение звеньев относительно стойки и относительно любого из звеньев механизма. Если движение звена относительно стойки принять за абсолютное движение, то соответствующий мгновенный центр вращения будем называть мгновенным центром вращения в абсолютном движении рассматриваемого звена. Если же рассматривается движение звена относительно любого подвижного звена механизма, то соответствующий мгновенный центр вращения будем называть мгновенным центром вращения в относительном движении рассматриваемых звеньев.  [c.64]


Установим условие, при котором движение твердого тела является поступательным. При поступательном движении сферического движения тела вокруг центра масс не происходит, и его кинетический момент относительно центра масс за рассматриваемый промежуток времени равен нулю.  [c.256]

Таким образом, результирующее движение также является вращением твердого тела вокруг неподвижной точки. Поэтому все сказанное в предыдущем параграфе относительно определения скоростей и ускорений точек твердого тела, нахождения уравнений подвижного и неподвижного аксоидов, углового ускорения может быть применено в данном случае.  [c.480]

Разложив плоское дви жение твердого тела на переносное поступательное вместе с поступательно движущимися осями координат, начало которых расположено в центре инерции твердого тела, и на относительное вращательное движение вокруг оси, проходящей через центр инерции С перпендикулярно к неподвижной плоскости (рис. 133), запишем дифференциальные уравнения плоского движения твердого тела в форме  [c.252]

Третье уравнение (теорема об изменении главного момента количеств движения системы материальных точек в относитель 10м движении по отношению к центру инерции, записанная для случая вращения твердого тела вокруг подвижной оси, движущейся поступательно) описывает относительное вращательное движение вокруг оси, проходящей через центр инерции С твердого тела перпендикулярно к неподвижной плоскости.  [c.252]

Так как обе внешние силы приложены в неподвижной точке О, то Шд — О, т. е. — =0, и оказывается постоянным. Итак, при движении по инерции симметричного твердого тела вокруг неподвижной точки имеет место случай сохранения главного момента количеств движения твердого тела относительно этой точки.  [c.525]

Плоское движение твердого тела. Наиболее общим приемом составления уравнений в задачах, где определяются силы реакций связей либо закон дви ения, является применение дифференциальных уравнений плоского движения твердого тела. В число данных и неизвестных величин должны входить масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, уравнения движения центра инерции, уравнение вращения твердого тела вокруг оси, проходящей через центр инерции перпендикулярно  [c.541]

В самом общем случае движение твердого тела мы представим как составное, разложив его на переносное поступательное вместе с какой-либо точкой , принятой нами за полюс, н относительное сферическое вокруг полюса.  [c.244]

Любое движение твердого тела, в том числе и движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых переносное, а другое — относительное. В частности, движение плоской фигуры в ее плоскости относительно системы координат OiX i/i, расположенной в той же плоскости (см. рис. 125), можно разложить на переносное и относительное движения следующим образом. Примем за переносное движение фигуры ее движение вместе с поступательно движущейся системой координат Ох у[, начало которой скреплено сточкой О фигуры, принятой за полюс. Тогда относительное движение фигуры будет по отношению к подвижной системе координат Ох[у[ вращением вокруг подвижной оси, перпендикулярной к плоской фигуре и проходящей через выбранный полюс О.  [c.136]

Сферическое движение твердого тела вокруг центра масс представляет собой движение тела относительно системы осей xiy Zi. Это движение определяется динамическими уравнениями Эйлера  [c.256]

При расс.мотрении вращательного движения твердого тела вокруг иеподвп.жной оси получена векторная формула Эйлера, по которой скорости точек тела полностью характеризуются общей для всех точек тела угловой скоростью вращения и расположением точек тела относительно оси вращения.  [c.169]

Уравнение (2), или (3) представляет собою дифференциальное уравнение враищтельного движения твердого тела вокруг неподвижной оси. Оно позволяет решить следующие две задачи 1) зная момент инерции Jz тела относительно оси вращения 2 и вращающий момент МА найти Ф=/ I), т. е. закон вращения тела или его угловую скоростыи 2) зная момент инерции относительно оси вращения г и зная закон вращения, т. е. <р=/ ), найти вращающий момент Решение первой задачи сводится к интегрированию дифференциального уравнения (3) решение же второй задачи сводится к простому дифференцированию функции <р=/(О по времени.  [c.681]

Рассмотрим тот важный случай движения твердого тела вокруг закрепленной оси, когда момент внешних сил обусловлен действием силы тяжести. На каждый элемент тела действует сила тяжести niig, создающая определенный момент относительно оси. Сумма моментов этих сил равна моменту равнодействующей сил тяжести, которая  [c.407]

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы. Рассмотрим движение твердого тела вокруг неподвижной точки О в однородном поле тяжести. Ось 0Z неподвижной системы координат направим вертикально вверх. С движущимся телом жестко свяжем систему координат Oxyz оси которой направим вдоль главных осей инерции тела для неподвижной точки О. Координаты центра тяжести G в системе координат Oxyz обозначим а, Ь, с. Ориентацию тела относительно неподвижной системы координат будем определять при помощи углов Эйлера ф ср, которые вводятся обычным образом (рис. 104).  [c.203]


ТЕОРЕМА [Остроградского — Карно кинетическая энергия, теряемая системой при ударе, равна доле кинетической энергии системы, соответствующей потерянным скоростям о параллельном переносе силы силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого действия, переносить параллельно ей самой в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится о проекции производной вектора проекция производной от вектора на какую-нибудь неподвижную ось равна производной от проекции дифференцируемого вектора на ту же ось о проекциях скоростей двух точек тела проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны друг другу Пуансо при движении твердого тела вокруг неподвижной точки подвижный аксоид катится по неподвижному аксоиду без скольжения Ривальса ускорение точек твердого тела, имеющего одну неподвижную точку, равно векторной сумме вращательного и осестремительного ускорений Робертса одна и та же шатунная кривая шарнирного четырехзвенника может быть воспроизведена тремя различными шарнирными четырехзвенниками  [c.284]

В основе всей динамики твердого тела лежат уравнения Эйлера, предложенные им в 1767 г. Уравнения эти определяют движение твердого тела около неподвижной точки и имеют место при произвольном движении твердого тела, так как самое общее движение твердого тела может быть представлено в виде суммы переносного поступательного движения, определяемого движением центра масс тела, и относительного движения тела вокруг центра масс. Центр масс твердого тела движется так, как если бы в нем была сосредоточена вся масса тела и приложены все действующие на тело силы. Относительное движение твердого тела вокруг центра масс определяется теоремой об изменении момента количества движения относительно осей Кёнига.  [c.368]

Ю. А. Гартунг разработал теорию движений тела с обобщенными прецессиями угловой скорости а) с точечным относительны М годографом угловой скорости (случай Лагранжа — Эйлера) б) с орямоли нейным годографом угловой скорости в подвижной плоскости, иосителе вектора угловой скорости (случай Гриоли) в) с круговым годографом г) с эллиптическим годографом. Применялись уравнения Ценова для систем с неголономными связями второго порядка, причем в одних случаях находились управляющие моменты в виде реакций связей, а в других эти дополнительные управляющие воздействия отсутствовали, т. е. находились новые частные случаи, вернее, может быть подслучаи в классической задаче о движении твердого тела вокруг неподвижной точки.  [c.14]

Предлагаемая читателю книга является вторым томом двух-ч омного издания Динамика системы твердых тел . Во втором томе рассмотрены динамика относительного движения, колебания системы относительно положения равновесия и стационарного движения, движение твердого тела вокруг неподвижной точки, свободные н вынужденные колебания, прецессия и нутации, линжс ннс. /lytii.i относительно своего центра масс, движение Hin ii и колоб.итя мом6р 1НЫ.  [c.9]

Теоретическое исследование закона Кассини. Движение твердого тела вокруг удаленного притягивающего центра исследовалось в предположении, что движение центра тяжести тела происходит в одной плоскости. Из уравнений (2) п. 552 следует, что движение в случае, когда центр тяжести тела описывает круговую орбиту, а само тело всегда вращается вокруг главной оси инерции, направленной к притягивающему центру, является стационарным. Предыдущие исследова1шя также показывают, что это движение устойчиво при всех возмущениях, которые не изменяют плоскости движения при условии, что момент ииерции относительно главной оси, которая направлена к притягивающему центру, меньше момента инерцин относительно другой главной оси, лежащей в плоскости орбиты. Теперь остается определить эффект от этих возмущений в наиболее общем случае, когда движение происходит в пространстве.  [c.423]

Это — движение твердого тела вокруг его центра тяжести. Размерность фазового пространства равна б. Существует 4 первых интеграла, независимых и однозначных энергия Т и три составляющие момента количества движения т относительно фиксированных осей. Точки фазового пространства, для которых Тит принимают заданные значения, образуют в общем случае многообразие М размерности 2 = 6 — 4, являющееся тором. Так как многобразие М инвариантно относительно динамического потока ipt, М несет инвариантную меру л (теорема Лиувилля). Следовательно, (М, / , ( ) — классическая система. Это доказывает также, что М несет на себе поле касательных векторов, не имеющее особых точек, — инфинитезимальный генератор потока (р .  [c.118]

Сферическое движение твердого тела вокруг центра масс представляет собой движение тела относительно системы осей Схху Х.  [c.470]

Тело, участвующее в двух вращениях вокруг пересекающихся осей, имеет неподвижную точку, расположенную на пересечении осей. Оно вращается вокруг неподвижной точки, т. е. соверщает сферическое движение. Таким образом, сферическое движение твердого тела можно считать состоящим из двух вращений вокруг пересекающихся осей переносного и относительного.  [c.207]

Вращение вокруг мгновенной оси должно иметь такое направление, чтобы скорость точки О имела такое же направление, что и скорость V. Отсюда получаем совпадение направлений вращения относительного и абсолютного вращений. Следова-гельно, Q = o. Таким образом, при сложении поступательного перепоатго и вращательного относительного движений твердого тела, у которого скорость поступательного движения перпендикулярна оси относительного вращения, эквивалентное абсолютное движение является вращением вокруг мгновенной оси, параллельной оси относительного вращения с угловой скоростью, совпадающей с угловой скоростью относительного вращения.  [c.215]

Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 207. Здесь относительным движением тела I является вращение с угловой скоростью а вокруг оси Аа, укрепленной на платформе 2, а переносным— поступательное движение платформы со скоростью v. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным движением является вращение вокруг его оси, а переносным — движение той же платформы. В зависимости от значения угла а между векторами w и V (для колеса этот угол равен 90°) здесь возможну три лyчa , 176  [c.176]

Главныа момент количеств движения твердого тела, вращающегося вокруг неподвижной оси, относительно оси вращения равен произведению момента инерции твердого тела относительно этой оси на проекцию угловой скорости вращения  [c.194]


Смотреть страницы где упоминается термин Движение твердого тела вокруг относительное : [c.156]    [c.136]    [c.208]    [c.318]    [c.319]    [c.304]    [c.39]   
Теоретическая механика (1986) -- [ c.76 ]



ПОИСК



Движение относительное

Движение твердого тела

Движение твердого тела вокруг

Движение твердого тела относительное

Движение твердых тел

Движение тела относительное

Закон движения твёрдого тела или в относительном движении вокруг центра масс

Относительное движение твердых тел

Относительность движения

Сумма моментов количеств движения точек твердого тела относительно оси, вокруг которой тело вращается



© 2025 Mash-xxl.info Реклама на сайте