Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные методы и метод конечного элемента

В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]


В книге дано систематическое изложение теории упругости, начиная с вывода основных соотношений и кончая некоторыми решениями, полученными в недавние годы. Подробно рассмотрены плоская задача, задачи кручения и концентрации напряжений, некоторые пространственные задачи, вариационные принципы и методы решения задач. Излагаются также задачи распространения волн в упругой среде. В авторском приложении к книге, которого не было в прежних изданиях, описан метод конечных разностей для решения плоской задачи, а в приложении, написанном переводчиком к русскому изданию, изложен метод ко. нечных элементов.  [c.2]

Связь вариационных методов и метода конечных элементов.  [c.550]

В последние годы в теории и практике механики материалов все чаще применяются различные численные методы. В начале это были в основном вариационные методы и метод конечных разностей. Сейчас наибольшее применение нашли проекционные методы расчета конструкций, деталей машин и т.д. На сегодня наиболее распространенным является метод конечных элементов (МКЭ). Эти тенденции можно проследить по соответствующим учебникам, статьям и другой научной литературе.  [c.372]

Расчет производился вариационно-разностным методом и методом конечных элементов при допущении, что давление иа опорном торце головки болта от внешнего растягивающего усилия распределено равномерно . Напряжения в стержне болта также принимались равномерными.  [c.125]

Для тел сложной конфигурации основная трудность состоит в выборе аппроксимирующих функций. Поэтому тело разбивают на малые, связанные между собой области, в пределах которых подбираются простые аппроксимирующие функции. По такому принципу строятся вариационно-разностные методы и метод конечных элементов.  [c.518]

В этой связи весьма привлекательным представляется использование промежуточных вариационных формулировок типа (4.233), (4.244), (4.246), когда на варьируемые функции (а стало быть, и на базисные функции в методе конечных элементов) не налагается никаких ограничений. Соответствующие варианты метода конечных элементов получили название смешанных.  [c.206]

Большое внимание уделено численным методам решения линейных и нелинейных задач механики деформирования упругих, упругопластических и вязкоупругих тел, численным методам решения дифференциальных и интегральных уравнений, а также прямым вариационным методам. В учебнике изложены основные положения метода конечных элементов, что обеспечит лучшую подготовленность студентов к изучению курса строительной механики. Даются понятия о методе граничных элементов.  [c.3]


Наряду с классическими вариационными методами решения задач плоской теории упругости широко используют численный метод конечных разностей и метод конечных элементов, реализуемые с помощью ЭВМ.  [c.328]

Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Основные этапы применения метода конечных элементов для приближенного решения сформулированной вариационной задачи следующие. Вначале область решения разбивается на конечное число подобластей, называемых конечными элементами. Разбиение на элементы может быть выполнено множеством разных способов, так как выбор размеров и форм элементов в общем случае произволен. Элементы для плоского тела обычно -имеют треугольную или четырехугольную форму. Разбиение области решения на конечные элементы и условия непрерывности, накладываемые на пробные функции, позволяют записать функционал (23.25) в виде суммы  [c.247]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Вместе с тем можно отметить также взаимное проникновение как рассматриваемых объектов (пластины, оболочки), так и используемых методов при решении задач (вариационные, численные, метод конечных элементов и др.) из теории упругости в строительную механику и наоборот. Поэтому нельзя установить также четкие границы между теорией упругости и строительной механикой.  [c.8]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]

Все рассмотренные нами ранее разностные схемы для решения уравнений теплопроводности являются реализациями метода конечных разностей. Системы алгебраических уравнений для определения численного решения мы получали путем замены производных в дифференциальном уравнении и в граничных условиях или в уравнениях теплового баланса для элементарных ячеек конечными разностями. Таки.м образом, в методе конечных разностей отправной точкой для получения приближенного решения является дифференциальная краевая задача. Однако искомое поле можно находить и из решения соответствующей вариационной задачи. На ее численном решении основан получивший широкое распространение метод конечных элементов (МКЭ) [7, 27].  [c.128]


При решении задач о номинальной и местной напряженности реакторов ВВЭР обычно приходится использовать комбинации указанных выше методов - сопротивления материалов, теории пластин и оболочек, аналитических и численных методов. Среди последних весьма эффективны вариационные методы - метод конечных элементов (см. 4 настоящей главы) и вариационно-разностный метод.  [c.55]

Истинные методы конечных элементов отличаются от подходов, в которых рассматривается разбиение масс, главным образом тем, что при разбиении конструкции жесткости элементов определяются посредством классических способов статических исследований самих элементов, а не в процессе идентификации конструкции [1.40—1.46]. На рис. 1.12, а показано несколько обычно используемых типов элементов. Каждый элемент определяется с помощью 6, 8, 16 или 20 точек или узлов, в которых задаются условия совместности для перемещений и нагрузок. Исходными переменными являются пространственные перемещения в этих узлах уравнения движения обычно записываются с помощью того или иного вариационного подхода. Энергия деформаций, вычисляемая для каждого элемента, выражается через все узловые перемещения каждому узлу приписывают некоторую массу, и кинетическую энергию выражают через узловые скорости. Поскольку разбивка на элементы производится с учетом геометрии конструкции, отпадает необходимость в процедуре задания жесткостей, а соответствующие члены уравнений вычисляются из непосредственного рассмотрения геометрии каждого элемента. Для адекватного представления сложной конструкции необходимо большое число узлов, поэтому главными вопросами в методе конечных элементов являются  [c.38]

Вместе с тем имеются возможности для дальнейшего развития оболочечных расчетных схем. Целесообразно также использование других методов расчета с привлечением, в частности, разностных и вариационно-разностных методов, например метода конечных элементов в трехмерной постановке.  [c.56]

Расчет напряжений и смещений в винте выполнен вариационно-разностным методом (ВРМ) в перемещениях на основе разностной схемы, изложенной в работе [9]. Выбор метода расчета был продиктован тем, что при одинаковых параметрах системы разрешающих конечно-разностных уравнений (число уравнений, ширина полосы ленточной матрицы) и одинаковом расположении узловых точек ВРМ может дать лучшую аппроксимацию уравнений теории упругости, чем метод конечных элементов (МКЭ).  [c.129]

Поскольку рассматриваемая задача вариационна, для ее решения может быть применен метод конечных элементов Исследуем сходимость МКЭ для данной задачи, используя результаты работы [20]. Пусть Uh — приближенное решение, полученное по МКЭ на заданной сетке h, а Uh — решение, построенное на той же сетке на основе значений степеней свободы, соответствующих точному решению задачи и.  [c.66]

I. Расчет упругой характеристики УЭ от статической нагрузки. Применяют либо готовые формулы (см. параграф 17), либо в более сложных случаях стандартные вычислительные программы на базе метода конечных элементов [21]. В некоторых случаях с успехом можно использовать и прямые вариационные методы [13]. В результате такого расчета получают зависимость между силой Р (моментом) и осадкой (углом поворота) Д  [c.216]

В настоящее время наибольшее распространение для оценки предельной несущей способности металлоконструкций получили такие методы как метод совместного решения уравнений равновесия и условий пластичности, вариационные методы, метод линий скольжения (метод характеристик), метхзд конечных элементов и другие.  [c.98]

Упомянутые выше теории пластин и модели конечных элементов демонстрируют эффективность вариационных методов в механике конструкций и смежных областях при приложении методов конечных элементов и при построении алгоритмов для эффективных численных расчетов сложных практических задач. Теория пластин Тимошенко—Миндлина создана специально для того, чтобы алго-ритмизовать расчет тонких пластин и пластин средней толщины. Исследования зоны краевого эффекта достигли состояния, когда решение уже может войти в противоречие со способностью модели описать реальную физическую ситуацию. Работы по теории толстых пластин являются логическим обобщением теории Тимошенко—Миндлина, ио требуется подождать до тех пор, пока развитие как технологии изготовления, так и проектирования этих пластин подтвердит ее практическую ценность. В целом приведенные выше высказывания дают общую картину положения дел в этой быстро развивающейся области.  [c.423]

До недавнего времени расчеты тонкослойных резинометаллических элементов (ТРМЭ) проводили с использованием трехмерных уравнений теории упругости, применяли вариационные, конечно-разностные методы и метод конечных элементов (МКЭ). Указанные подходы нельзя признать эффективными и достоверными, особенно в определении напряжений и перемещений слоев, ввиду чрезвычайной сложности их численной реализации. К вычислительным трудностям решения больших систем (пакет может иметь несколько десятков слоев) добавляются проблемы, связанные с малой объемной сжимаемостью резины и приводящие к плохо обусловленным системам уравнений.  [c.4]

Таким образом, применение метода конечных разностей к областям сложной конфигурации спяззно с индивидуальным подходом к каждой из них, что лишает его преимуществ перед другими численными методами. В этом с.мысле существенно больпш- ми возможностями обладают вариационно-разностный метод и метод конечных элементов, связанные с классическими вариационными методами расчета конструкций.  [c.42]


В заклю-чение отметим, что для исследования концентрации напряжений в элементах конструкций на практике широко используют теоретические и экспериментальные методы. Среди теоретических методов в настоящее время наиболее распространены численные методы решения на ЭВМ задач теории упругости, пластичности и ползучести (среди них вариационно-разностный метод и метод конечных элементов, см. гл. 26). Они позволяют достаточно точно исследовать коицентрацию аврдаений в телах произвольной формы (плоских, осесимметричных и пространственных) при простом и. сложном нагружении.  [c.564]

Во втором подходе применяется вариационный принцип по пространственным переменным и времени. Вариационные методы, использующие свертку интегралов, описаны Гэртином [29] и успешно применены в работах [5, 24]. На основе этих методов могут быть также построены пространственные и временные конечные элементы.  [c.357]

Последовавшее затем быстрое развитие этого подхода охва тнло широкий класс задач в строительной механике и механике твердого тела. Распространение метода конечных элементов на другие задачи было предпринято в начале бО-х гг. на основе вариационного подхода. Совсем недавно дополнительно к вариационному методу конечных элементов, который можно назвать классическим, начали использоваться другие методы конечных элементов. Наиболее известные из ннх —метод Галер-кина, который является частным случаем взвешенного метода невязок, метод наимекьших квадратов, процедура, называемая прямым методом, и метод глобального баланса, или метод Одена.  [c.24]

В настоящее время метод конечных элементов (МКЭ) является одним из наиболее популярных методов решения краевых задач в САПР. В математическом отношении метод относится к группе вариационно-разностных, Строгое доказательство таких важных ствойств, как устойчивость, сходимость и точность метода, проводится в соответствующих разделах математики и часто представляет собой непростую проблему. Тем не менее МКЭ  [c.12]

КОНЕЧНЫХ ЭЛЕМЕНТОВ МЕТОД - вариационный сеточный метод, являющийся,в свою очередь, проекционным методом при специальных координатных функциях. Область определения искомой функции в КЭМ разбивают на конечные элементы треугольники, четырехугольники, тетраэдры и т.п. Внутри каждого элемента задаются функции формы,произвольные функции с числом параметров, равным произведению чиспа узлов элемента на число условий в этих узлах. В качестве координатных функций применяют функции, тождественно равные нулю всюду, кроме одного конечного элемента, внутри которого они совпадают с функциями формы. В КЭМ решение дифференциальных уравнений сводится к минимизации функционала, вследствие чего этот метод является вариационным. С другой стороны, КЭМ, является сеточным методом, т.к. исследуемую область разбивают на подобласти, образуя сетку. Повышенная точность схем КЭМ обусловлена добавлением не только узлов, расположенных на границах элементов, но и внутренних узлов.  [c.30]

Настоящая глава посвящена изложению одного из наиболее перспективных способов дискретизации непрерывных задач — методу конечных элементов. Метод будет сформулирован как обобщение матричных методов сил н перемещений строительной механики на случай континуальных систем. Преимущества такой формулировки — в очевидных возможностях обобщения на случай нелинейных и неконсервативных систем, недостаток —в завуали-рованности связи с традиционными вариационными методами — Ритца и Бубнова — Галеркина, а также в трудностях перенесения на краевые задачи немеханического происхождения.  [c.130]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

В настоящей главе будут рассмотрены лишь наиболее часто применяемые при решении задач прикладной теории упругости вариационные и другие приблиншнные методы (методы Ритца, Бубнова — Галеркина, Канторовича — Власова, сеток, конечных элементов).  [c.189]


Решать простые задачи такие, которые могут быть с успехом решены, например, традиционными вариационными методами, методом конечных элементов вряд ли целесообразно. Этот метод является весьма эффективным, когда рассматриваемый объект имеет спо кные конфигурации (с вырезами, подкреплениями, слоя4ными очертаниями контура) и граничные условия (свободный или частично свободный край, неоднородные условия закрепления и т. д.).  [c.227]

Существуют два основных численных. метода решения уравнений в частных производных метод конечных разностей и метод конечных элементов. Они отличаются сп н обами получения системы уравнений для значений искомых функций в узловых точках. Метод конечных разностей базируется непосредственно на дифференциальном уравнении и граничных условиях, а метод конечных элементов — на эквивалентной вариационной постановке задачи.  [c.69]

Для тел слол<йой формы функции влияния наиболее просто определяются одним из численных методов (методом конечных элементов, вариационно-размостным методом и т. п., см. иже).  [c.15]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]

К числу эффективных методов анализа напряженно-деформированных состояний в элементах реакторов относятся численные методы - метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ), метод граничных интегральных уравнений ( ГИУ), получившие значительное развитие в последнее десятилетие благодаря их повьпиенной универсальности и появлению ЭВМ с большими быстродействием и памятью. Конечноразностный метод получил применение при определении термоупругих напряжений в зонах патрубков реакторов водо-водяного типа [10, 12].  [c.35]

Формулировка метода конечных элементов. Основные соотношения МКЭ для задач статики и динамики конструкций могут быть получены как обобщения известных вариационных методов Галеркина, Ритца и других, например коллокации, наименьших квадратов, на пространство кусочно-непрерывных базисных или пробных функций специального вида [47]. Для построения этого пространства исходная расчетная область D (конструкция или ее отдельные элементы) покрывается сеткой, составленной из совокупности М достаточно простых непересекающихся подобластей - конечных элементов Д , связанных между собой в отдель-  [c.104]

В последние годы использование ЭВМ дало эффективные средства [4, 5] для анализа напряженно-деформированных состояний роторов методами конечных элементов (МКЭ) или вариационно-разностными методами (ВРМ). Следует, однако, заметить, что использование для расчетов ВРМ и МКЭ позволяет определять напряженно-деформированное состояние в основном для осесимметричных конструкций непрерывной формы. Поэтому для зон разгрузочных окон, мест под соплодержатели, а также мест соединения деталей ротора необходимо использовать дополнительные экспериментальные и расчетные исследования локальных напряженных состояний.  [c.123]

Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]

Будучи по своей природе вариационным, метод конечных элементов хорошо приспособлен для решения двумерных и трехмерных задач прикладной механики со сложными граничными условиями. В СССР благодаря работам А. Ф. Смирнова, А. Р. Ржа-ницына, А. П. Филина, Л. А. Розина, А. В. Александрова, Б. Я. Лащеникова, Н. Н. Шапошникова, В. А. Постнова, В. Г. Корнеева и ряда других авторов этот метод получил четкое математическое обоснование и стал признанным инструментом в расчетах сооружений, в том числе таких элементов транспортных сооружений, как плиты, балки-стенки, оболочки, многослойная проезжая часть или грунтовые массивы, взаимодействующие с конструкциями.  [c.3]

Следовательно, сейчас уже имеется достаточно надежный аппарат для теоретического обоснования несовместных конечных элементов, использование которых до недавнего времени считалось некорректным. Доказательство сходимости МКЭ в несовместном случае не использует традиционные приемы вариационно-разностных методов и является новой математической задачей. Таким образом, если МКЭ в совместном случае можно классифицировать как модификацию метода Ритца, то обоснованное применение несовместных конечных элементов позволяет классифицировать МКЭ как самостоятельный метод не только с точки зрения процедурной реализации, но и с точки зрения теоретического обоснования.  [c.13]


Смотреть страницы где упоминается термин Вариационные методы и метод конечного элемента : [c.113]    [c.22]   
Смотреть главы в:

Приложение методов теории упругости и пластичности к решению инженерных задач  -> Вариационные методы и метод конечного элемента



ПОИСК



ВАРИАЦИОННЫЕ МЕТОДЫ ПОСТРОЕНИЯ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Вариационная формулировка метода конечных элементов

Вариационно-разностные схемы. Метод конечных элементов (МКЭ)

Использование вариационных принципов для построения основных зависимостей метода конечных элементов

Конечный элемент

Метод вариационно-разностный расчета конструкций конечных элементов расчета конструкций 521—525 — Примеры расчета

Метод вариационный

Метод конечных элементов

Метод конечных элементов вариационны

Метод конечных элементов вариационны

Одномерный пример вариационного метода конечных элементов

Ряд вариационный

Часть В. Вариационные принципы как основа методов конечных элементов



© 2025 Mash-xxl.info Реклама на сайте