Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие методы и принципы механики

ОБЩИЕ МЕТОДЫ И ПРИНЦИПЫ МЕХАНИКИ  [c.139]

Аналитический метод решения основных задач механики достиг весьма широких обобщений в научных изысканиях крупнейшего французского ученого Лагранжа (1736—1813). В книге Лагранжа Аналитическая механика все основные результаты получены на основе одного общего метода, называемого принципом виртуальных (возможных) перемещений. В предисловии к этой книге, опубликованной первым изданием в 1788 г., Лагранж пишет В этой работе отсутствуют какие бы то ни было чертежи. Излагаемые мной методы не требуют ни построений, ни геометрических или механических рассуждений они требуют только алгебраических операций, подчиненных планомерному и однообразному ходу. Все любящие анализ с удовольствием убедятся в том, что механика становится новой отраслью анализа, и будут мне благодарны за то, что этим путем я расширил область его применения .  [c.34]


В предыдущих разделах рассматривались некоторые частные способы определения перемещений, удобные при решении простейших задач. Ниже излагается общий метод определения перемещений в стержневых системах, в основе которого лежат два основных принципа механики начало возможных перемещений и закон сохранения энергии.  [c.359]

Общий метод расчета на динамическую нагрузку основан на известном из теоретической механики принципе Даламбера. Согласно этому принципу, всякое движущееся тело может рассматриваться как находящееся в состоянии мгновенного равновесия, если к действующим на него внешним силам добавить силу инерции, равную произведению массы тела на его ускорение и направленную в сторону, противоположную ускорению. Поэтому в тех случаях, когда известны силы инерции, без всяких ограничений можно применять метод сечений и для определения внутренних усилий использовать уравнения равновесия.  [c.287]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]

Французский ученый Даламбер (1717—1783 гг.) ввел в механику новый метод решения задач динамики при помощи уравнений статики. Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813 гг.), проделавшего большую работу по математическому обоснованию законов механики и обогатившего механику принципом возможных перемещений. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком академиком М. В. Остроградским (1801 — 1861 гг.). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.6]


Ряд важнейших исследований по аналитическим методам решения задач механики принадлежит знаменитому русскому математику и механику М. В. Остроградскому (1801 —1861). Он установил очень важный вариационный принцип динамики — принцип наименьшего действия, позволяющий сводить изучение движения механических систем к некоторой экстремальной задаче. Этот принцип называется принципом Остроградского — Гамильтона, так как независимо от Остроградского и в несколько менее общем виде он одновременно также был дан английским ученым Гамильтоном (1805— 1865). М. В. Остроградский решил также много частных механических задач в области гидростатики, гидродинамики, теории упругости, теории притяжения и баллистики.  [c.16]

Характерным для системы изложения аналитической механики является то, что в ее основу кладутся общие принципы (дифференциальные или интегральные) и уже из этих принципов аналитическим путем получаются основные дифференциальные уравнения движения. Изложение общих принципов механики, вывод из них основных дифференциальных уравнений движения, исследование самих уравнений и методов их интегрирования — все это составляет основное содержание аналитической механики.  [c.8]

Связь аналитической механики и современной физики. Два великих достижения современной физики теория относительности и квантовая механика — теснейшим образом связаны с аналитической механикой. Теория относительности Эйнштейна революционизировала все области физики. Было показано, что ньютонова механика справедлива лишь приближенно для скоростей, малых по сравнению со скоростью света. Однако аналитический метод, основанный на использовании принципа наименьшего действия, остался неизменным. Модифицирована была лишь функция Лагранжа получение же дифференциальных уравнений движения из принципа минимума осталось. Действительно, полная независимость вариационного принципа от какой-либо специальной системы отсчета делала его особенно ценным для построения уравнений, удовлетворяющих принципу общей относительности. Этот принцип требует, чтобы основные уравнения природы оставались инвариантными при произвольных преобразованиях координат.  [c.394]

Завершив этот новый цикл исследований по применению принципа наименьшего действия к проблемам механики, Эйлер приходит, в общем, к тем же выводам, что и в 1744 г. Эйлер снова отмечает, что существуют два метода решения проблем механики один метод — прямой, основанный на законах равновесия или движения другой. .. применяет формулы, которые должны быть максимумами или минимумами и решение которых находится с помощью метода максимумов и минимумов. Первый находит решение, определяя эффект по действующим силам другой рассматривает конечные причины и выводит действия ). Оба метода, полагает Эйлер, должны находиться в полном согласии и приводить к одному и тому же решению, и именно это согласие убеждает нас в истинности решения.  [c.791]

Оценивая значение своей работы об общем методе динамики, Гамильтон прежде всего подчеркивает, что благодаря найденной им новой математической форме динамика и оптика будут рассмотрены как следствия общего принципа ). Для него основной целью является установление единой схемы, в которой из некоторого основного соотношения выводились бы все законы механики и оптики.  [c.824]

В дальнейшем статически неопределимые системы будут рассмотрены подробно и будет дан общий метод их расчета. Сейчас же мы познакомились с задачей такого типа, чтобы уяснить специфику подхода к решению задач методом сопротивления материалов, отличающую эту науку от теоретической механики и состоящую р рассмотрении условий деформации. Вместе с тем показано, что при решении задачи методом сопротивления материалов, используются уравнения равновесия теоретической механики, исходя из принципа отвердения.  [c.88]

В главах XV и XVI обращено внимание на формулирование основных фундаментальных вариационных принципов механики деформируемого тела, на их дуальность и вытекающую из нее дуальность методов сил и перемещений. Примеры, приведенные в главе XVI, призваны помочь читателю уяснить механический смысл вопросов. Алгоритмический же и вычислительный аспекты вопроса, в том числе в связи с использованием ЭВМ при расчете сложных конструкций, обсуждается, из-за ограниченности объема книги, лишь в общих чертах и даются указания на литературные источники, где этот аспект освещен подробно. Думается, что даже такое знакомство с новыми вопросами расширит кругозор читателю, а указания на основные литературные источники будут способствовать этому.  [c.8]


Вариационные принципы механики, с одной стороны, имеют большое теоретическое значение, поскольку они выявляют энергетическую основу теории и устанавливают связь между различными подходами в описании проблемы теории. С другой стороны, важным является практическое значение принципов, поскольку они позволяют, во-первых, имея общие выражения для функционалов, находить дифференциальные уравнения и естественные граничные условия в любых конкретных случаях, что непосредственно в ряде случаев сделать затруднительно, а во-вторых, находить решения, минуя составление дифференциальных уравнений, при помощи так называемых прямых методов.  [c.457]

Уравнения равновесия стержней и нитей можно получить из общих вариационных принципов механики, поэтому их можно использовать и для приближенных методов расчета. Прежде чем изложить методы приближенных решений, напомним положения вариационного исчисления и основные вариационные принципы, используемые в механике стержней и нитей.  [c.47]

Философские основы механики Герца. Предсмертное сочинение Герца Принципы механики не ставило целью решение практических задач или разработку методов механики. Цель этого сочинения — показать, что общие теоремы механики и весь ее математический аппарат могут быть последовательно развиты, исходя из единого принципа.  [c.226]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Традиционный подход в механике газа, жидкости, твердого деформирования тела основывается на понятии сплошной среды [60, 67, 167, 174] и приводит к построению континуальных моделей сред, которые выражаются в терминах интегральных или дифференциальных законов сохранения для основных параметров среды, являющихся функциями непрерывных координат и времени, определенной гладкости и заданными начально-краевыми условиями, с учетом конкретных реологических свойств среды (упругость, вязкость, пластичность и т. д.). Для построения приближенных методов решения эффективны вариационные формулировки моделей [1, 23 33], следующие из общих вариационных принципов механики сплошных сред.  [c.83]

Мы видим, что Гамильтон рассматривает вводимую им функцию как результат индукции в оптической науке. Эта функция охватывает всю геометрическую оптику. Но важно и другое. Гамильтон ун е здесь отмечает в общем виде родство принципа Ферма и принципа наименьшего действия. Конечно, отсюда еще довольно далеко до построения такой математической схемы, в которой оптика лучей совпала бы с механикой материальной точки. Здесь еще нет ничего принципиально нового, ибо родство принципа Ферма и принципа наименьшего действия отмечалось и ранее. Лишь в последующее время, когда в разработанной Гамильтоном математической теории совпадут формы уравнений лучевой оптики и механики, определится то, что мы называем оптико-механической аналогией. Но уже в 1827 г. Гамильтон прекрасно сознает математическую новизну своего метода, подчеркивая, что благодаря этому методу математическая оптика представляется... в совершенно новом виде, аналогичном тому, в каком Декарт представил применение алгебры к геометрии Рассмотрим теперь математический метод Гамильтона, с помощью которого он исследовал законы систем лучей.  [c.207]

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно и.з законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнейия движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Да.шмбера.  [c.344]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

В области основ и принципов механики и ее общих аналитических методов десятилетия, непосредственно предшеотвовавшие советскому периоду, дали немного. Систематически к таким общим вопросам обращался один из представителей школы Остроградского Г. К. Суслов (1857—1932), деятельность которого протекала в Киеве  [c.279]

Поэтому можно к исследованию механизмов с различными функциональными назначениями применять общие методы, базирующиеся на основных принципах современной механики. В механике обычно рассматриваются статика, кинематика и динамика как абсолютно твердых, так и упругих тел. При исследовании машин и механизмов, как правило, мы можем считать жесткие тела, образующие механизм, абсолютно твердыми, так как перемещения, возникающие от упругих деформаций тел, малы по от Ю-[[leHHfO к перемещениям самих тел и их точек. Если мы рассматриваем механизмы как устройства, в состав которых входят только твердые тела, то для исследования кинематики и динамики механизмов можно пользоваться методами, излагаемыми в теоретической механике. Если же требуется изучить кинематику и динамику механизмов с учетом упругости звеньев, то Для этого, кроме методов теоретической механ.чки, мы должны еще применять методы, излагаемые в сопротивлении материалов, теории упругости и теории колебании. Если в состав механизма входят жидкие или газообразные тела, то необходимо привлекать к исследованию кинематики и динамики механизмов гидромеханику и аэромеханику.  [c.17]


В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]

Принцип виртуальных перемещений служит наиболее общим методом решения задач статики. Он возник в результате обобщения золотого правила механики проигрыш в расстоянии пропорционален выигрышу в силе . Использование принципа виртугильных перемещений позволяет наиболее экономно сформулировать условия равновесия систем материальных точек на основе геометрических свойств связей и информации об активных силах без введения неизвестных реакций связей.  [c.343]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Принцип возможных перемещений, являясь одним из наиболее общих принципов механики, дал возможность развить на его основе приближенные методы, которые нашли самое широкое применение в расчетной практике. В частности, он является теоретической основой uinpoKo применяемого в строительной механике метода деформаций. На его основе удачно развиваются метод конечных элементов и метод конечных разностей, рассмотренные ниже.  [c.192]

В течение ряда лет автор читал двухсеместровый курс лекций по вариационным принципам механики для аспирантов Purdue University и всякий раз, когда ему приходилось сталкиваться с основными принципами и методами аналитической механики, он ощущал-чувство необычайного подъема. Вряд ли существует еще какая-либо из точных наук, где абстрактные математические рассуждения и конкретные физические доводы так прекрасно гармонируют и дополняют друг друга. Не случайно принципы механики производили огромное впечатление на многих выдающихся математиков и физиков. Не случайно также, что в европейских университетах с давних пор курс теоретической механики обязательно входит в план обучения любого будущего математика и физика. Аналитическая механика — это гораздо большее, чем просто эффективный метод решения динамических задач, с которыми приходится встречаться в физике и технике. Для того чтобы подчеркнуть важность теоретической механики, нет необходимости ссылаться на гироскопы, как бы ни были важны они в физике и технике—само существование общих принципов механики служит ее оправданием.  [c.11]

Ifi. Появившееся в 1743 г, сочинение Даламбера Traits de Dynamique положило конец всем подобного рода вызовам ученых в нем предложен прямой и общий метод, с помощью которого можно разрешить, или во всяком случае выразить в виде уравнений, все проблемы механики, какие только можно себе представить. Этот метод приводит все законы движения тел к законам их равновесия и таким образом сводит динамику к статике. Мы уже отметили выше, что принцип, примененный Яковом Бернулли при определении центра колебания, обладал тем преимуществом, что он поставил это определение в зависимость от условий равновесия рычага однако только Даламбер подошел к этому принципу с более общей точки зрения и придал ему всю ту простоту и плодотворность, на которые он был способен.  [c.312]

Таков тот принцип, которому, хотя и не вполне точно, я даю здесь название принципа наименьшего действия и на который я смотрю не как на метафизический принцип, а как на простой и общий вывод из законов механики. Во втором томе Memoires de Turin ) можно увидеть применение, которое я дал ему для разрешения многих трудных проблем механики. Этот принцип, будучи соединен с принципом живых сил и развит по правилам вариационного исчисления, дает тотчас же все уравнения, необходимые для разрешения каждой проблемы отсюда возникает столь же простой, как и общий, метод разрешения проблем, касающихся движения тел. Однако этот метод представляет собою не что иное, как следствие метода, составляющего предмет второй части настоящей работы и обладающего в то же время тем преимуществом, что он выводится из первых принципов механики.  [c.320]

К этому же периоду относится и создание знаменитой Мёсап1дие Analytique , перевод первого тома которой здесь дается. Исходя из основного принципа возможных скоростей, которому Лагранж дал новое доказательство, и пользуясь разработанными им же вариационными методами, Лагранж строит здесь впервые полную систему аналитической механики. В этом классическом труде сосредоточено такое количество фундаментальных идей и блестящих методов, до такой предельной ясности доведено изложение основных законов механики, что и до сих пор эта книга не потеряла своей свежести и может быть использована как классический трактат по аналитической механике. Здесь впервые появляется идея обобщенных координат лагранжев метод рассмотрения жидкости, как материальной системы, характеризуемой большой Подвижностью частиц, уничтожил различие между механикой жидкости и механикой твердого тела, так что общие принципы механики могли быть распространены на гидростатику и гидродинамику. Механика у Лагранжа стала общей наукой  [c.584]


Шире, чем обычно в общих курсах, освещены общие законы механики — вариационные принципы, энергетические теоремы и идеи общих методов (глава XV), теория тонкостенных систем, динамика (глава XVH) и теория устойчивости систем (глава ХУП1), усталость металлов (глава XIX). Дана по возможности современная трактовка методов строительной механики стержневых систем и общая нелинейная теория тонких стержней.  [c.15]

Тогда же возник вопрос об общем методе кинетоста-тических исследований. С этой целью машиноведы пробовали применить не только принцип Даламбера, но и уравнение Лагранжа — однако безрезультатно. Как пишет Лоренц, все... динамические операции основывались на последовательном применении принципа потерянных сил Даламбера, который обеспечивал рассчитывающему и конструирующему инженеру преимущество непрерывной обозримости всех действий, что также сделало основы динамики особенно удобными для преподавания в высшей школе. Это следует подчеркнуть в особенности, ибо в последнее время стремятся приспособить для этого заимствованные из аналитической механики уравнения Лагранжа для каждой степени свободы движения... Основываясь на собственном опыте, я сомневаюсь, чтобы этот весьма значительный в науке метод пришелся но вкусу большинству инженеров  [c.90]

Среди приближенных методов наибольшее распространениё получили методы, использующие вариационные принципы, и. методы возмущений (асимптотических разложений) по большим или малым значениям параметра или координаты. Полученные в предыдущих параграфах уравнения равновесия стержней и нитей, как правило, являются нелинейными и в общем случае не могут быть решены в аналитической форме за исключением частных случаев. При решении уравнений равновесия обычно используют или численные методы, или приближенные, использующие вариационные принципы механики. При численных методах решения задач усложняются тем, что все задачи механики стержней относятся к двухточечным краевым задачам.  [c.47]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

К началу советского периода работа в области аналитической механики оживилась в Казани. Здесь под влиянием традиционных геометрических интересов обратились к общим методам механики, которые можно рассматривать и в геометрической трактовке. Работы А. П. Котельникова были важным вкладом в общую теорию векторов и неевклидову механику. Д. Н. Зеилигер разрабатывал теорию движения подобно изменяемого тела. Е. А. Болотов (1872—1921) занимался вариационным принципом Гаусса. Его исследования были продолжены Н. Г. Четаевым (1902-1959).  [c.280]

Глава носит вводный характер. В ней кратко приведены используемые в дальнейшем определения и общие сведения нелинейной механики сплошных сред [23, 28, 33, 60, 67, 72, 105, 167, 191]. Основными являются понятия градиента скорости и энергетической пары тензоров напряжений п скоростей деформаций, виртуальной мош ности и принципа виртуальных скоростей как а.чьтернатпвной формулировки закона сохранения импульса. При описании реологических свойств материала главное внимание уделено нелинейной теории пластичности в форме теории течения. Приведен конспективный обзор методов моделирования разрушения в квазистатике и динамике.  [c.10]

Возвращаясь к принципу Гаусса, с учетом изложенного результата из теории ошибок можно его сформулировать в терминах теории вероятностей, а именно истинное движение системы отличается от кинематически возможного тем, что имеет наибольшую вероятность. Связь между методом наименьших квадратов и принципом наименьшего принужцения Гаусса представляет собой нечто большее, чем просто аналогия, т.е. отличие истинного движения тела от возможного носит вероятностный характер. Принцип Гаусса имеет существенное преимущество перед принципом Даламбера он дает возможность получить уравнения движения системы при любых неголоном-ных связях, т.е. принцип Гаусса является наиболее общим принципом механики и этот принцип допускает вероятностную трактовку В современной физике пришлось ясно осознать тот факт, что случайность нельзя полностью исключить и ее надо учитывать как составную часть любой теории.  [c.12]

Таким образом, как объективные причины — потребности небесной механики, так и субъективные — деятельность Гамильтона в качестве королевского астронома и профессора астрономии, и, наконец, внутренняя логика его работ (оптико-механическая аналогия) определили направление работы Гамильтона в области дальнейшей разработки найденного и примененного им в оптике математического метода. Сам Гамильтон неоднократно подчеркивал тесную связь своих работ но динамике с предшествовавшими работами по теории систем лучей. В письме к Уэвеллу (18 марта 1834 г.) он пишет, что публикуемая им в Phylosophi al Transa tions работа есть новое приложение тех математических принципов, которые. .. (он.— Л. П.) уже прилагал к оптике . В его письме к Дж. Гершелю (17 октября 1834 г.) мы читаем следующее ...почти достигнув в оптике желаемой цели..., я вернулся к старому проекту применения того н е метода к динамике . Гамильтон не ставит себе задачи создания новых или даже видоизменения классических основных принципов механики. Его задача — иная она точно выражена в названии его работы Об общем методе в динамике, с помощью которого изучение движения всех систем взаимно притягивающихся или отталкивающихся тел сводится к отысканию и дифференцированию определенной центральной зависимости или характеристической функции  [c.211]


Смотреть страницы где упоминается термин Общие методы и принципы механики : [c.221]    [c.13]    [c.7]    [c.533]    [c.160]    [c.583]    [c.264]    [c.556]    [c.2]   
Смотреть главы в:

Сборник задач по теоретической механике  -> Общие методы и принципы механики



ПОИСК



Механика общая

Общие принципы

Общий метод

Принцип метода

Принципы механики



© 2025 Mash-xxl.info Реклама на сайте