Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аналитическая механика. Уравнения Лагранжа

В начале шестого отдела (стр. 438) Лагранж подвергает углубленному исследованию малые колебания, выполняемые различными телами системы, когда их лишь немного выводят из положения равновесия. Только применение замечательных результатов, которыми аналитическая механика обязана Лагранжу, позволяет успешно разрешить этот вопрос, один из наиболее важных и общих, какие только встречаются в теории движения. Но некоторые из выводов, приведенных Лагранжем, недостаточно обоснованы. Решение этой проблемы зависит от разрешения алгебраического уравнения, метод составления которого был указан Лагранжем это уравнение никогда не имеет мнимых корней, но, в противоположность утверждению  [c.574]


Подробнее об инвариантности уравнений Лагранжа можно прочесть в книге И. М. Беленького, Введение в аналитическую механику, Высшая школа , 1964.  [c.95]

Дальше будет показано, что из общего уравнения динамики вытекают основные уравнения движения системы. Также и основные теоремы динамики можно получить из уравнения (11.7а). Поэтому Ж. Лагранж положил общее уравнение динамики в основу аналитической механики.  [c.120]

Канонические уравнения применяются, главным образом, при исследовании теоретических проблем аналитической механики,в особенности при изучении общих методов интегрирования уравнений динамики. Широко применяются канонические уравнения и в небесной механике. С другой стороны, их применение к простейшим конкретным задачам не приводит к большей эффективности по сравнению с решением, основанным на уравнениях Лагранжа второго рода.  [c.149]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Бонне, Примечание ко второму тому Аналитической механики Лагранжа.) Эта теорема доказывается при помощи естественных уравнений движения.  [c.325]

Следовательно, связь, наложенная на тело, не может быть выражена в виде соотношения в конечной форме между координатами. Вследствие этого при приложении общих теорем аналитической механики возникают особые трудности, из которых наиболее существенной является невозможность применения уравнений Лагранжа, если при преобразовании выражения кинетической энергии Т приходится принимать в расчет такие связи.  [c.323]

Нужно, впрочем, заметить, что уравнения типа (41.4) встречались уже значительно ранее у Лагранжа в его Аналитической механике , но там они выведены и применены лишь для частного случая малых возмущений.  [c.290]

Две основные функции Т я V соответствуют двум величинам, которые приравниваются друг другу в уравнении Ньютона Произведение массы на ускорение равно силе . Это уравнение может быть интерпретировано как баланс между силой инерции и движущей силой. Подобный баланс может быть установлен и при аналитическом подходе путем разделения членов с двумя основными скалярами аналитической механики кинетической энергией Т и силовой функцией и. Уравнения Лагранжа можно записать в виде  [c.144]


Связь аналитической механики и современной физики. Два великих достижения современной физики теория относительности и квантовая механика — теснейшим образом связаны с аналитической механикой. Теория относительности Эйнштейна революционизировала все области физики. Было показано, что ньютонова механика справедлива лишь приближенно для скоростей, малых по сравнению со скоростью света. Однако аналитический метод, основанный на использовании принципа наименьшего действия, остался неизменным. Модифицирована была лишь функция Лагранжа получение же дифференциальных уравнений движения из принципа минимума осталось. Действительно, полная независимость вариационного принципа от какой-либо специальной системы отсчета делала его особенно ценным для построения уравнений, удовлетворяющих принципу общей относительности. Этот принцип требует, чтобы основные уравнения природы оставались инвариантными при произвольных преобразованиях координат.  [c.394]

Это и есть основные уравнения механики материальных точек, которые были впервые установлены Лагранжем в его Аналитической механике .  [c.24]

Кроме отмеченных выше специфических проявлений механистического упрощенного мировоззрения, типичного для 18 века, труд Лагранжа, разумеется, не свободен и от известных недостатков специального научного характера. Некоторые теоремы (например — теорема Лагранжа об устойчивости равновесия консервативной динамической системы и т. п.) доказаны в нем недостаточно строго, некоторые выводы недостаточна ясны или недостаточно общи (вывод условий равновесия проведен только для удерживающих связей, а вывод уравнений движения дан только для удерживающих и не зависящих от времени связей и т. д.). Дальнейший прогресс аналитической механики в 19 веке устранил эти недостатки и принес существенные обобщения системы аналитической механики Лагранжа, причем в этом прогрессе науки исключительно важную роль сыграли труды представителей передовой русской школы механики, школы Остроградского — Чебышева — Ляпунова Жуковского.  [c.6]

На случай кратных корней характеристического уравнения впервые обратил внимание Лагранж в своей Аналитической механике". Излагая теорию колебаний, он указывает (Ж. Лагранж, Аналитическая механика, т. I, 1950, Динамика, отдел шестой, 1, п. 7, стр. 452 и сл.), что координаты системы будут оставаться малыми только при условии, что все корни характеристического уравнения вещественны, положительны и неравны между собой. Нетрудно показать па частном примере, что последнее требование излишне. Рассмотрим колебание материальной точки, лежащей в горизонтальной плоскости и притягиваемой к неподвижному центру с силой, пропорциональной расстоянию. Уравнения движения точки будут  [c.424]

Цель настоящего сочинения — дать сжатое, последовательное и достаточно полное изложение современного состояния предмета. Аналитическая механика основывается на одном результате Лагранжа, который мы будем называть основным уравнением. Этот результат устанавливается в гл. 1П после необходимого предварительного обсуждения. Чтобы изложение приобрело возможно более гибкую и изящную форму, основное уравнение необходимо представить в нескольких различных видах. Именно так строится изложение в этой книге. Каждая из этих различных форм (всего их шесть) примечательна своими собственными особыми достоинствами, и каждая из них, по мнению автора, является верной отправной точкой для развития определенной ветви механики. Автор старался ясно указать условия, при которых справедлива каждая из таких форм, и круг проблем, для решения которых каждая из них является наиболее подходящей. Повышенный интерес к этим вопросам объясняется тем фундаментальным значением, какое они имеют для осознания предмета в целом. Стоит однажды понять их, как все в целом становится ясным и предстает в простом и естественном свете.  [c.11]

Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]


Это — та форма, в которой Лагранж представил дифференциальные уравнения движения уже в старом издании Аналитической механики  [c.311]

Все это, однакож, мало похоже на то, что говорит Лагранж в Аналитической механике, в 40-м члене второй части. Уравнение (а), или б Г =  [c.394]

Лагранж занимает в истории механики чрезвычайно важное место. Он сам в предисловии к своей Аналитической механике говорит ... план этого сочинения совершенно новый. Я имел в виду свести всю теорию механики и методы решения связанных с ней задач к общим формулам, простое развитие которых дает все необходимые для решения каждой задачи уравнения . ... Это сочинение, кроме того, будет полезно и в другом отношении оно объединит и представит с одной общей точки зрения различные до сих пор найденные принципы, служащие для решения задач механики, покажет их взаимную связь и зависимость и даст возможность судить об их верности и области их применения ).  [c.795]

Во втором издании Аналитической механики Лагранж приводит следующие уравнения  [c.821]

Для полной характеристики комплекса вопросов, связанных с вариационными принципами, необходимо отметить, что, кроме уравнений Лагранжа второго рода и канонических уравнений Гамильтона, была найдена еще одна группа уравнений, занимающая промежуточное положение между уравнениями Лагранжа и Гамильтона. Существенно новое, особенно для приложений в физике, внес в этот вопрос аналитической механики Раус.  [c.843]

На стр. 336 и сл. Остроградский делает несколько замечаний по поводу той части Аналитической механики , в которой Лагранж выводит уравнение движения механики из принципа наименьшего действия в связи с принципом живых сил. Остроградский считает ход рассуждений Лагранжа неточным (стр. 336). Он основывает свои возражения на том, что на основании уравнения живых сил существует зависимость между некоторыми вариациями, которые Лагранж считает независимыми.  [c.905]

А. Г.), с удовольствием убедятся в том, что механика становится новой отраслью анализа, и будут мне благодарны за то, что этим путем я расширил область его применения Эта характеристика, если принять ее безоговорочно, означает, что аналитическая механика Лагранжа является ветвью анализа, что она — механика, лишенная механических рассуждений , так как в ней указаны общие методы для составления уравнений любой  [c.200]

Тогда же возник вопрос об общем методе кинетоста-тических исследований. С этой целью машиноведы пробовали применить не только принцип Даламбера, но и уравнение Лагранжа — однако безрезультатно. Как пишет Лоренц, все... динамические операции основывались на последовательном применении принципа потерянных сил Даламбера, который обеспечивал рассчитывающему и конструирующему инженеру преимущество непрерывной обозримости всех действий, что также сделало основы динамики особенно удобными для преподавания в высшей школе. Это следует подчеркнуть в особенности, ибо в последнее время стремятся приспособить для этого заимствованные из аналитической механики уравнения Лагранжа для каждой степени свободы движения... Основываясь на собственном опыте, я сомневаюсь, чтобы этот весьма значительный в науке метод пришелся но вкусу большинству инженеров  [c.90]

Общие уравнения Лагранжа движения голономной механической системы с конечным числом степеней свободы завершили собой большой этап работы механиков и математиков конца XVIII в. Эти уравнения дали возможность привести решение всякой задачи о движении механической системы к интегрированию дифференциальных уравнений. Таким образом была осуш ествлена мысль Л агранжа сделать механику новой ветвью чистого анализа. Отсюда возникло новое учение в области математических наук, именуемое аналитической механикой. Уравнения Лагранжа, лежащие в основе аналитической механики, позволили составлять единообразным приемом уравнения движения как угодно сложной механической системы.  [c.7]

Лагранж (1736—1813). Достижения Лагранжа, этого величайшего математика XVIII века, во многих отношениях параллельны работам Эйлера. Лагранж вполне независимо от Эйлера получил решение изопериметрических задач, сделав это совершенно новыми методами. Он разработал для этой цели новое, вариационное исчисление. Он также понял преимущество вариационных принципов в связи с той свободой, которую мы получаем, описывая положение механической системы при помощи выбираемой по нашему усмотре-ншо совокупности параметров ( обобщенные координаты ). Если принцип виртуальных перемещений и принцип Далам-бера позволили рассматривать механическую систему как нечто целое, не разбивая ее на изолированные частицы, то уравнения Лагранжа добавили еще одно, чрезвычайно важное свойство — инвариантность относительно произвольных преобразований координат Это позволило выбирать системы координат, удобные для данной конкретной задачи. В своей Аналитической механике (1788) Лагранж создал новое, необычайно мощное оружие для решения любых механических задач при помощи чистых вычислений, без каких бы то ни было физических или геометрических соображений, при условии, что кинетическая и потенциальная энергии заданы в абстрактной аналитической форме. Относясь к этому выдающемуся результату со своей обычной скромностью. Лагранж писал в предисловии к своей книге Читатель не найдет в этой книге рисунков. Развитые мною методы не требуют ни каких бы то ни было построений, ни геометрических или механических аргументов — одни только алгебраические операции в соответствии с последовательными едиными правилами . Лагранж таким образом создал программу и основания аналитической механики.  [c.390]

В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

В области небесной механики много великолепных работ дали два француза — Алексис Клеро (1713—1765) и Жан ле Рои Д Аламбер (1717—1783), издавший в 1743 г, свой знаменитый Трактат по динамике . В этом трактате Д Аламбер показал, между прочим, как привести уравнение движения точек, связанных между собой, к задаче динамического равновесия. В течение XVIII в. были решены многие вопросы теоретической механики и перед механикой встала задача — дать общий метод, при помощи которого возможно было бы решение всех механических проблем чисто аналитически. Такой метод нашел Луи Лагранж (1736—1813). Его знаменитая Аналитическая механика изложена без единого чертежа, на основе общего метода.  [c.15]

Методы статики несвободной системы, изложенные в гл. XXVII, обобщаются и на динамику. Подобно тому как использование уравнения принципа возможных перемещений — общего уравнения статики — привело к различным формам уравнений равновесия (в декартовых координатах, в обобщенных зависимых и независимых координатах), точно так же из общего уравнения динамики выводятся аналогичные формы дифференциальных уравнений движения несвободной системы. Уравнения эти получили наименование уравнений Лагранжа, так как были впервые опубликованы в Аналитической механике Лагранжа.  [c.385]

Уравнения Лагранжа второго рода с множителями применяются главным образом для исследования движений систем с неголономными связями, а также в тех случаях сложных го-лономных связей, когда выявление некоторых обобщенных координат оказывается затруднительным. Подробное изложениг теории уравнений Лагранжа, в том числе и уравнений с множителями, относится к специальному курсу аналитической механики ).  [c.420]

Начало возможных перемещений Лагранжа. Применительно к твердым телам начало возможных перемещений сформулировано Лаграюкем в его Аналитической механике (1788 г.). К упругим телам (стержневой системе) этот принцип впервые был применен Пуассоном в 1833 г. Подобно тому, как для твердых тел начало возможных перемещений позволяет получить уравнения равновесия твердого тела, так и для упругих тел начало возмояшых перемещений MOJiieT заменить уравнения равновесия тела.  [c.45]

Эти уравнения были получены французским дытематиком и механиком Ж. Лагранжем в его знаменитом трактате Аналитическая механика>, опубликованном в 1788 г. (русский перевод т. I вышел в 1938 г., т. 11—в 1950 г.). В этом трактате впервые были изложены основы аналитической механики.  [c.27]

Приобретя широкую известность, трактат Даламбера тем не менее не смог сыграть роли систематической сводки аппарата аналитической динамики материальных систем, ибо оказался лишь малоупорндоченным набором примеров на приложение принципа равновесия потерянных сил, не содержащим никаких методически стройных и единообразных приемов составления дифференциальных уравнений движения материальных систе.м. Главной причиной этого было то, что Даламбер не уделил внимания аналитическому оформлению того принципа статики системы, сочетание которого с принципом Даламбера только и дает возможность завершить составление упомянутых уравнений. Первым систематическим трактатом по аналитической механике систем материальных точек, подчиненных механическим связям, явился лишь трактат Лагранжа Аналитическая механика , вышедший первым изданием в 1788 году. Он сыграл основополагающую роль для дальнейшего развития той разновидности аналитической механики, которая опирается на комбинацию принципа виртуальных перемещений с црин-ципом Даламбера или с петербургским принц1гпом динамики системы.  [c.2]

Высокая степень систематичности изложения аналитического аппарата статики и динамики материальных систем, достиг-иутая в Аналитической механике Лагранжа, прекрасно осознавалась ее автором. Следуя стилю рационалистического механистического мировоззрения, прогрессивного для 18 века, Лагранж выражал это свое мнение, говоря, что он предложил себе свести теорию механики и способ решения относящихся к ней задач к общим формулам, простое развертывание которых дает все уравнения, необходимые для решения любой задачи . Та н е самая мысль выражена и в конце предисловия к первому изда-иию 1811 г., где Лагранж говорит, что методы, которые здесь излагаются, не требуют ни построений, ни геометрических или. механических рассуждений, но нуждаются исключительно в алгебраических операциях, подчиненных правильному и единообразному течению и что те, кто любит анализ, увидят с удовольствием, что механика сделалась его новой ветвью .  [c.3]

Предлагаемая вниманию читателя очень коротенькая книжка английского ученого Лича тоже посвящена теоретической механике. Но в ней нет ни подробного разбора частных задач, ни исследования каких-либо отдельных механических систем, примечательных по характеру их движения. В книге Лича содержится в достаточно лаконичном виде изложение самых основных вопросов и теорий аналитической механики, вызванных к жизни известными уравнениями Лагранжа и Гамильтона. И главная цель автора состояла в том, чтобы надлежащим изложением методов аналитической механики в их классическом виде привести читателя книги к пониманию аналитической механики непрерывных сред и особенно к знакомству с осног-ными вопросами механики специальной теории относительности и началами теории поля. Этим последним вопросам отведена примерно треть книги.  [c.5]

Этот принцип в соединении с принципом живых сил может служить для составления уравнений движения системы в каждом отдельном случае но, как мне кажется, никто еще не подумал о том, чтобы уравнение, выражающее принцип живых сил, применять просто как условное уравнение и применить поэтому метод неопределенных множителей [ ]. Этим путем, вводя непосредственно независимые переменные системы, я прищел к тем общим уравнениям движения, которые даны в Аналитической механике (ч. П, отд. 4) и к которым Лагранж прищел или посредством прямого преобразования координат, или посредством применения общих уравнений вариационного исчисления к этим преобразованиям.  [c.167]

Вместо принципа наименьшего действия можно представить другой принцип, который также состоит в том, что первая вариация некоторого интеграла обращается в нуль, и из которого можно получить дифференциальные уравнения движения еще более просто, чем из принципа наименьшего действия. Этот принцип раньше оставался незамеченньш, вероятно, потому, что здесь вместе с исчезновением вариации вообще не получается минимум, как это имеет место для принципа наименьшего действия. Гамильтон был первым, исходившим из этого принципа. Мы воспользуемся этим принципом для того, чтобы представить уравнения движения в той форме, которую им дал Лагранж в аналитической механике. Пусть, прежде всего.  [c.307]

Остроградский указывает, что анализ Лагранжа в той части его аналитической механики, где он выводит уравнение движения из принципа, наименьвиего действия вместе с законом живых сил, неточен. Остроградский считает, что в силу применения закона живых сил между некторыми переменными, которые Лагранж полагает независимыми, существует зависимость  [c.830]


Лагранж в Аналитической Механике рассматривает именно эту узкую форму принципа наименьщего действия. Однако указание на более широкую форму принципа содержится в его ранней работе ), где в № 13 прямо указывается на то, что полученное Лагранжем в № 8 этой статьи соотношение, тождественное с уравнением (55), применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц ) рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Д Аламбера и в силу этого являются следствиями один другого. Тем не менее, это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различным способом. Оба эти принципа  [c.837]

Если по приведенной общей теореме из двух интегралов найден третий, то из этого последнего и одного из прежних находится четвертый и т. д. пока не вернемся к одному из данных. Существуют интегралы, которые при этой операции исчерпывают всю систему интегральных уравнений, в то время как для других цикл замыкается раньше. Смысл этой основной теоремы, известной уже в течение 30 лет, был в супщости скрыт. Она была открыта Пуассоном и была также известна Лагранжу, который пользовался ею как вспомогательной теоремой во второй части Аналитической механики появившейся только после его смерти. ) Но этой теореме придавалось всегда совершенно иное значение она должна была только показывать, что в некотором разложении известные члены не зависят от времени, и увидеть в ней ее теперешнее значение было не так легко. В этой теореме заложен в то же время фундамент для интегрирования дифференциальных уравпетшн в частных производных первого порядка.  [c.8]

Как в этот период, так и после первого издания своего трактата Лагранж занимался небесной механикой и получил в этой области немало важных результатов по расчету орбит планет и комет, по общим методам решения уравнений, определяющих двин<ение тел Солнечной системы. В Аналитическую механику включены многие замечательные достижения Лагранжа, но она вошла бы в историю нашей науки даже без них, благодаря оригинальности системы изложения и единству метода, использованного ее автором. В предисловии к первому изданию Лагранж с полным основанием писал, что существует уже много трактатов по механике, но план настоящего трактата является овершенно новым. Я поставил себе целью свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи . И с законным удовлетворением Лагранж добавил к этому Я надеюсь, что способ, каким я постарался этого достичь, не оставляет желать чего-либо лучшего . Поэтому особенно поучительно познакомиться с тем, на основе каких исходных положений и какими средствами Лагранж создал стройную систему своей (аналитической) механики.  [c.200]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]


Смотреть страницы где упоминается термин Аналитическая механика. Уравнения Лагранжа : [c.588]    [c.90]    [c.392]    [c.548]    [c.241]    [c.254]    [c.196]   
Смотреть главы в:

Теоретическая механика  -> Аналитическая механика. Уравнения Лагранжа



ПОИСК



Аналитическая механики

Лагранжева механика

МЕХАНИКИ Уравнения Лагранжа

Механика аналитическая

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте