Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

зависимость между напряжением и деформацией решение)

Изучение процесса распространения упругопластических волн в стержне при продольном ударе осуществлялось путем регистрации перемещений отдельных фиксированных сечений с помощью индукционных датчиков [9], обеспечивающих запись скорости сечений во время удара при осциллографировании. Экспериментальные данные сравнивались с результатами теоретического решения задачи о продольном растягивающем ударе с постоянной скоростью по стержню конечной длины [2, 3, 9], построенного на основании деформационной теории приближенным методом Г. А. Домбровского. При этом предполагалось, что при динамическом нагружении зависимость между напряжением и деформацией о- -е такая же, как и при статическом нагружении. Статическая диаграмма а е аппроксимировалась специально подобранными функциями, допускающими точное решение краевой задачи. Про-  [c.225]


Область, заключенная внутри ромба А B D, представляет собой область (безопасных напряженных состояний. Стороны ромба пересекают оси 01 и 02 ъ точках с координатами [а], а их продолжения пересекают оси 01 и 02 в точках с координатами [ст]/ л. На этом же рисунке для сравнения штриховой линией нанесен четырехугольник, соответствующий условиям прочности (8.55). Первая и вторая теории прочности с определенными ограничениями могут быть применены к решению вопросов прочности хрупких материалов. У второй теории прочности тоже есть существенный недостаток, который состоит в том, что учитывается лишь одно удлинение е ах е, а не взаимодействие всех трех составляющих деформации. Однако к трактовке условий прочности (8.54) и (8.58) можно подойти и с несколько иных позиций. Действительно, например, условия (8.58), не учитывая взаимодействия самих деформаций, накладывают определенные связи на напряжения и тем самым учитывают их взаимодействие. Аналогично, и условия (8.54), имея в виду зависимость между напряжениями и деформациями, учитывают взаимодействие деформаций Ri, е.д и Вд. Таким образом, первая теория прочности учитывает взаимодействие деформаций, а вторая теория учитывает взаимодействие напряжений. Однако, несмотря на это, область применимости обоих этих критериев прочности сильно ограничена и оправдана лишь в применении к хрупким разрушениям.  [c.164]

Предыдущие главы (исключая предварительное изложение основ теории упругости в главе 1) касались двумерных задач. Настоящая глава, так же как и последующая, посвящена дальнейшим общим вопросам, которые важны для решения рассматриваемых далее задач. В данной главе анализ напряжений полностью отделен от анализа деформаций и не вводятся никакие зависимости между напряжениями и деформациями. Эти результаты приложимы к напряжениям, возникающим в любой (сплошной) среде, например в вязкой жидкости или в пластическом твердом теле, и то же самое справедливо в отношении деформаций.  [c.229]

Определение зависимости между напряжением и деформацией в пластической области имеет большое теоретическое и практическое значение при проектировании конструкций, работаюш,их при знакопеременном нагружении. К настоящему времени в литературе известны в основном два подхода к решению этой задачи. Один из них базируется на феноменологических представлениях с использованием классической теории упругости и пластичности, например [1—4], другой — на статистической теории дислокаций [5, 6]. На основании статистической теории дислокаций были получены зависимости между деформацией и напряжением начальной кривой деформации, нисходящей и восходящей ветвей симметричной петли механического гистерезиса. Эти зависимости представлены в виде бесконечных степенных рядов по величине приложенного напряжения, для которого можно считать плотность дислокаций постоянной. При достаточно больших напряжениях (деформациях) экспериментальные данные показывают, что плотность дислокаций изменяется, петли механического гистерезиса несимметричны и разомкнуты.  [c.159]


В процессе решения задач об определении НДС элементов конструкций в физически нелинейной циклической температурно-временной постановке в рассмотрение вводятся зависимости между напряжениями и деформациями, учитывающие изменение температуры и сопротивление циклическому деформированию конструкционных материалов.  [c.17]

Соответствуюш,ее решение А. В. Верховского для чисто упругой деформации не имеет преимуществ по сравнению с решением Нейбера. Поэтому мы не будем его рассматривать, а рассмотрим решение этой же задачи для случая нелинейных зависимостей между напряжениями и деформациями.  [c.133]

Задача определения напряженно-деформированного состояния твердого тела в общем случае внутренне статически неопределима, и для ее решения необходимо дополнить уравнения равновесия конкретными зависимостями между напряжениями и деформациями. Рассмотрим нелинейно упругое тело, у которого напряжения являются однозначными функциями деформаций, не зависящими от истории деформирования. Частный случай такого тела (линейно упругого) был подробно описан в гл. 1.  [c.75]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

Приведенные выше формулы теории напряженного и деформированного состояния применимы как для упругих, так и неупругих тел. Для решения контактных задач необходимо знать количественные зависимости между напряжениями и деформациями. Рассмотрим их для случая линейно упругих, изотропных тел.  [c.96]

Чтобы найти дифференциальное уравнение, решением которого является yj мы должны использовать зависимость между напряжениями и деформациями.  [c.116]

В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в этих случаях пользуются эмпирическими зависимостями. В частности, Ф.С. Ясинский предложил следующую формулу для критических по устойчивости напряжений  [c.151]

К настоящему времени разработана расчетно-экспериментальная методика [38], позволяющая получать из кинетической диаграммы вдавливания шарового индентора стандартную диаграмму одноосного растяжения с последующим определением механических характеристик материала. Конкретный вид связи между интенсивностями напряжений S и деформацией е, соответствующий экспериментальной диаграмме Р - h, устанавливается численным решением методом конечных элементов осесимметричной упругопластической задачи с переменной границей контакта. Установление зависимости между напряжениями и деформациями по разработанному алгоритму позволяет идентифицировать механические характеристики как в упругой, так и в упругопластической областях деформации.  [c.78]


Полный анализ динамического упругопластического выпучивания цилиндрической оболочки сложен, и для получения результатов в замкнутом виде или численного решения использовали определенные упрощения. И1 следуя пластическое поведение оболочек средней толщины [1], принимали билинейную аппроксимацию зависимости между напряжениями- и деформациями при малом модуле упрочнения. При таких допущениях выпучивание оболочки происходит лишь после того,, как мембранные напряжения оказываются далеко в пластической области. Для весьма тонких оболочек [5, 6] упругий анализ динамического выпучивания справедлив, если ни в одной точке оболочки напряжения не достигают предела текучести в процессе выпучивания такое ограничение справедливо при больших значениях отношения радиуса к толщине.  [c.187]

Наша дальнейшая задача заключается в исследовании деформаций упругого тела и в установлении необходимой для решения задач теории упругости зависимости между напряжениями и деформациями.  [c.31]

Таким образом, возникает вопрос об определении критической силы для сжатого стержня в пластической области. Решение этого вопроса осложняется тем обстоятельством, что зависимость между напряжениями и деформациями в пластической области при возрастании и убывании нагрузки не одинакова и, следовательно, процесс деформации зависит не только от свойств материала, но и от процесса нагружения стержня. Поэтому мы рассмотрим два характерных случая нагружения стержня.  [c.362]

Строго говоря, классические методы расчета теории пластичности, которые применяются в данной работе, не учитывают ряда важных особенностей, свойственных знакопеременной деформации, и дают, по-видимому, лишь оценочный результат. Как показывают эксперименты, у большинства металлов после каждого циклического изменения пластических деформаций наблюдается изменение некоторых упруго-пластических характеристик, изменяется зависимость между напряжением и деформацией. Чтобы учесть эту особенность при решении ряда технологических задач обработки металлов давлением, необходим соответствующий аппарат. Вероятно, он может быть создан путем обобщения результатов, опубликованных в книге (В. В. М о с к в и т и н. Пластичность при переменных нагружениях. Изд-во Московского университета, 1965).  [c.56]

Решения контактных задач теории неустановившейся ползучести,, естественно, оказалось возможным получить из такого рода системы уравнений только благодаря определенным предположениям о физической зависимости между напряжениями и деформациями, положенным в основу наследственной теории ползучести.  [c.201]

Основные константы упругой деформации. Для решения большинства вопросов обработки металлов давлением необходимо знать зависимость между напряжениями и деформациями.  [c.12]

При совместном решении этого уравнения и уравнения, устанавливающего зависимость между напряжениями и деформациями, определяется среднее главное напряжение.  [c.100]

Расчеты, выполненные в предположении установившейся ползучести, эквивалентны расчетам при нелинейных зависимостях между напряи ениями и деформациями. В частности, в случае использования степенной зависимости скорости пластической деформации от напряжения (11) решения этих задач эквивалентны исследованию пластического состояния деталей при степенном упрочнении. Поэтому все методы расчета при нелинейных зависимостях между напряжениями и деформациями, как, например, метод упругих решений А. А. Ильюшина [24], метод переменных параметров упругости И. А. Биргера [6] могут быть использованы и для расчетов на установившуюся ползучесть. В случае применения степенной зависимости скорости пластической деформации от напряжения, решения задач о пластическом состоянии деталей при степенном упрочнении, ряд пз которых  [c.255]

Расчеты с использованием предположения установившейся ползучести эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. В частности, в случае использования степенной зависимости скорости деформации ползучести от напряжения решения этих задач эквивалентны исследованию пластического состояния деталей при степенном упрочнении. Поэтому ряд результатов, полученных В. В. Соколовским [149], легко переносится и на ползучесть.  [c.218]

Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

Решение задачи неустановившейся ползучести скрученного круглого стержня по теории старения эквивалентно расчету за пределами упругости при нелинейной зависимости между напряжениями и деформациями. Последнее изложено в книге С. Д. Пономарева и др. [120].  [c.230]

При решении задачи принимаем зависимость между напряжениями и деформациями в виде  [c.458]


Второй алгоритм охватывает класс задач, связанный с неупругой деформацией оболочечных конструкций. На первый взгляд представляется, что учет физической нелинейности, обусловленной нелинейной зависимостью между напряжением и деформацией, не вносит принципиальных особенностей в реализацию алгоритма решения нелинейной краевой задачи. Однако в этом случае система исходных дифференциальных уравнений не может быть явным образом разрешена относительно производных от усилий и перемещений и представлена в нормальной форме.  [c.5]

Обычно на основе физических законов и кинематических соотношений выводят дифференциальные или интегральные уравнения, которые затем решают аналитически или численно [18]. Наличие поверхностей разрыва напряжений, учет изменения физико-механических характеристик материала с температурой и нелинейной зависимости между напряжениями и деформациями приводят к значительным трудностям при решении.  [c.253]

Во всех задачах предыдущих глав основные зависимости между напряжениями и деформациями приведены в точной форме, хотя окончательное решение находилось приближенно. В классической теории пластин [1], чтобы упростить задачу и свести ее к двумерной, с самого начала вводятся некоторые гипотезы, а именно делаются предположения о линейном изменении деформаций и напряжений по нормали к плоскости пластины. Так называемые точные решения теории пластин справедливы только тогда, когда справедливы эти допущения, т. е. если пластины тонкие и прогибы малы.  [c.186]

Как указывалось выше, расчеты на ползучесть по теории старения Ю. Н. Работнова эквивалентны расчетам на прочность и жесткость при нелинейных зависимостях между напряжениями и деформациями, заданных графически. Поэтому многочисленный решения подобных задач могут быть использованы в этом случае и для расчетов на ползучесть. В расчетах на ползучесть по теории старения Ю. Н. Работнова возможно непосредственное использование серии экспериментально полученных кривых ползучести, без аппроксимации их аналитическими зависимостями, что повышает точность расчетов.  [c.292]

Поскольку в решениях задач установившейся ползучести условиям совместности деформаций должны удовлетворять компоненты деформаций ползучести, определяемые формулами (12.88), эти решения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. В частности, при использовании зависимости (12,89) они эквивалентны решениям чисто пластических задач со степенным упрочнением.  [c.302]

Как отмечалось в 81, расчеты на установившуюся ползучесть эквивалентны расчетам на прочность и жесткость при нелинейных зависимостях между напряжениями и деформациями. Поэтому для решения задачи установившейся ползучести изогнутого бруса может быть использован один из вариационных методов. Рассмотрим применение принципа минимума дополнительной работы для исследования установившейся ползучести равномерно нагретого бруса прямоугольного поперечного сечения при чистом изгибе.  [c.310]

В более сложных случаях для решения задач кручения некруглых брусьев может быть использовано выведенное в 45 вариационное уравнение кручения бруса некруглого сечения при нелинейных зависимостях между напряжениями и деформациями (7.20).  [c.324]

Закон связи напряжений с деформациями в этих условиях при простом растяжении легко может быть установлен чисто экспериментально, Однако при сложном напряженном состоянии связь между напряжениями <Г1, сгг, <Гз и соответствующими им деформациями 1, Сг, Ез в общем виде установить опытным путем невозможно, так как это требует практически необозримого количества экспериментов. Поэтому для установления зависимостей между напряжениями и деформациями приходится прибегать к дополнительным гипотезам, называемым теориями пластичности. В настоящее время известны несколько подходов к аналитическому решению задач пластичности при сложном напряженном состоянии. Критерием их пригодности является соответствие с экспериментом.  [c.77]

При решении подобного рода задач закон Гука теряет свою силу, и прямая пропорциональность между напряжениями и деформациями заменяется некоторой более сложной зависимостью, определяемой видом диаграммы растяжения. Если  [c.433]

Итак, когда мы выходим за рамки закона Гука, связь между напряжениями и деформациями становится не только нелинейной, но оказывается к тому же еще и неоднозначной, а кроме того, она зависит и от истории нагружения. Поэтому, если напряжения превосходят предел пропорциональности и предел упругости, все те соотношения, которые были выведены нами ранее с использованием закона Гука, становятся неверными вдвойне . При решении задач за пределом упругости надо прежде всего условиться об истории нагружения, а оказавшись за пределом пропорциональности, надо позаботиться о том, как отразить реальную зависимость напряжений от деформаций, не следующую уже закону Гука.  [c.137]

Сплошная среда наделяется свойствами, отвечающими основным свойствам реального материала. При решении большей части задач среда считается совершенно упругой, а между напряжениями и деформациями принимается линейная зависимость (рис. 4, а). Между тем реальное тело  [c.15]

В последнее время при решении нелинейных задач применяются методы начальных напряжений и методы начальных деформаций. Суш,ественное достоинство этих методов состоит в том, что они сходятся для любой зависимости между напряжениями и деформациями. Алгоритмы этих методов достаточно сложны, и поэтому здесь мы их рассматривать не будем. Их описание можно найти в специальной литературе, а программная реализация осуществлена в комплексах ГЕМЫВ-80, ПРОЧНОСТЬ-75 и др.  [c.68]

Для инженерных расчетов прочности в настоящее время находят применение решения с использованием деформационной теории. В рассмотрение вводится нелинейная зависимость между напряжениями и деформациями (физически нелинейная задача), диаграммы деформирования конструкцио11иых материалов трактуются на основе изохронных (учитывающих реологические эффекты) и изоцик-лических (отражающих изменение сопротивления циклическому деформированию за пределами упругости) кривых.  [c.230]

Г. Нейбер [59] и В.В. Соколовский [60] рассмотрели некоторые задачи для упрочняющегося тела в условиях сложного сдвига при специально подобранных аналитических зависимостях между напряжениями и деформациями, аппроксимирующих реальные диаграммы. Заметим, что в случае упрочнения уравнения задачи для сложного сдвига аналогичны уравнениям плоского течения сжимаемой идеальной жидкости, а применяемый прием аналогачен методу Чаплыгина. В работах [59-60], а также в статье В.Л. Добровольского [61] этим методом получены точные решения для некоторых форм выточек в полуплоскости и полосе. В. Пенс рассмотрел сдвиг призматического тела с симметричными острыми надрезами при кусочно-линейном законе напряжение- деформация [62]. В работе Райса [63] методом годографа исчерпьшаю-ще исследована задача для полуплоскости с угловым вырезом при произвольном законе упрочнения.  [c.149]

В дальнейшем ограничимся при решении задач лишь случаем изотропного тела. Этот случай имеет большое практическое значение. Такие материалы, как литое железо и сталь, по их свойствам в пределах упругости можно без значительных погрешностей принимать за изотропные. Зависимость между напряжениями и деформациями в этом слзгчае выражается посредством двух упругих постоянных, и мы ее без затруднения устцровим, если сделаем следующее вполне естественное допущение. Положим, что в случае изотропного материала направления главных напряжений совпадают в каждой точке с направлениями главных деформаций и, следовательно, угол между двумя взаимно перпендикулярными площадками искажается лишь в том случае, если есть соответствующие касательные напряжения. Выделим из тела плоскостями, нормальными к главным напряжениям, бесконечно малый прямоугольный параллелепипед. В силу сделанного допущения углы этого параллелепипеда при деформации не искажаются и полное изменение формы выделенного элемента определяется тремя главными деформациями вхх, вуу и е (координатные оси х,у, г направим параллельно главным напряжениям в рассматриваемой точке). Соответствующие им напряжения будут Хх, У у и Согласно обобщенному закону Гука каждая из составляющих напряжения представляется линейной функцией составляющих деформации. Например, Хх можно представить в таком виде  [c.45]


Приближенные методы расчета при нелинейных зависимостях между напряжениями и деформациями, например, метод упругих решений А. А. Ильюшина [50], метод переменных параметров у пругости И. А. Биргера [8, 9] могут быть использованы и для расчетов на установившуюся ползучесть.  [c.218]

Последующим анализом для точек, которые расположены достаточно близко одна к другой, можно построить зависимостй компонент скоростей и и Ыу, а затем определить и скорости деформаций. В дальнейшем, используя уравнения связи, можно определить напряжения по методике, даваемой Э. Томсеном. По мнению Э. Томсена, единственным допущением, требуемым при решениях методом визиопластичности, является установление зависимостей между напряжением и деформацией.  [c.232]

Какосимиди Н. Ф., Прокопович И. Е. Решение контактной задачи теории ползуче-. сти 11 и линейной зависимости между напряжениями и деформациями.— ПМТФ,  [c.408]

Н. Коперника (16 в.) и открытие нем. астрономом И. Кеплером законов движения планет (нач. 17 в.). Основоположником динамики явл. итал. учёный Г. Галилей, к-рый дал первое верное решение задачи о движении тела под действием силы (закон равноускоренного падения) его исследования привели к открытию закона инерции и принципа относительности классич. М. им же положено начало теории колебаний (открытие изохронности малых колебаний маятника) и науке о сопротивлении материалов (исследование прочности балок). Важные для дальнейшего развития М. исследования движения точки по окружности, колебаний физ. маятника и законов упругого удара тел принадлежат голл. учёному X. Гюйгенсу. Создание основ классич. М. завершается трудами И. Ньютона, сформулировавшего осн. законы М. (1687) и открывшего закон всемирного тяготения. В 17 в. были установлены и два исходных положения М. сплошной среды закон вязкого трения в жидкостях и газах (Ньютон) и закон, выражающий зависимость между напряжениями и деформациями в упругом теле (англ. учёный Р. Гук).  [c.415]


Смотреть страницы где упоминается термин зависимость между напряжением и деформацией решение) : [c.142]    [c.488]    [c.119]    [c.149]    [c.76]    [c.197]    [c.23]    [c.84]   
Статика и динамика тонкостенных оболочечных конструкций (1975) -- [ c.111 ]



ПОИСК



228 — Деформации — Зависимость

597 — Деформации и напряжения

Деформация Зависимости между деформациями в рас

Зависимости между

Зависимости напряжений от деформаций

Зависимость между напряжениями и деформациями

Напряжения 5 — Зависимости



© 2025 Mash-xxl.info Реклама на сайте