Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача двух тел круговая

Переменные действие-угол в задаче двух тел. Задача двух тел изучалась в 1 гл. 8. Здесь будут рассмотрены переменные действие-угол в этой задаче. Будем использовать обозначения из 1 гл. 8. Орбиту считаем эллиптической (или, в частности, круговой). Расстояние г точки Р от притягивающего центра О удовлетворяет неравенствам Г1 г Г2, где Г1 = а 1 — е), Г2 = а 1 + е) (а — большая полуось орбиты, е — ее эксцентриситет). Отсюда и из формул 1 гл. 8 следует, что  [c.381]


Общая задача о седиментации разбавленной системы сферических частиц внутри кругового цилиндра может быть удобно рассмотрена при помощи решения задачи двух тел для двух сферических частиц и решения задачи о единичной сфере, эксцентрично расположенной в цилиндре (см. разд. 7.3). Ситуация для п сфер, оседающих в цилиндре, показана на рис. 8.3.4. Видно, что нужно рассматривать не только прямые взаимодействия всех сфер  [c.437]

Отметим, что из (10.62 ) вытекает также точный третий закон Кеплера для круговых орбит задачи двух тел.  [c.504]

Сущность излагаемых методов состоит в том, что в качестве нулевого приближения (или промежуточной орбиты) для решения уравнений динамики берется не решение задачи двух тел, а решение одного из упрощенных вариантов ограниченной круговой задачи трех тел, чаще всего получаемых с помощью методов осреднения. Далее, теория возмущений строится с помощью метода Н. Н. Боголюбова [32] и его вариантов, разработанных для задач с быстрыми и медленными переменными [33] и специально для планетных задач [34] — 36].  [c.432]

Первые найденные в небесной механике периодические решения— это эллиптическое движение в задаче двух тел (см. ч. И, 2.01) и лагранжевы решения в задаче трех тел (см. ч. V, 1.02, 2.03). После того как Хилл доказал, что уравнения задачи, названной его именем (уравнения (5.3.16)), допускают периодическое (почти-круговое) решение, Пуанкаре разработал достаточно общий метод — метод малого параметра (см. 1.01) и на его основе установил [2] существование трех сортов периодических решений в планетном варианте неограниченной задачи трех тел (тело имеет массу то, значительно большую масс т = а1 А, Ш2 — 0,211 планет Р, и Рг, также отличных от нуля, а > О, К2 > О, — малый положительный параметр). Частными случаями этих решений являются периодические решения первого, второго и третьего сорта в ограниченной задаче трех тел (см. ч. V, 2.05).  [c.792]

Что касается скорости Луны, то она и в задаче двух тел должна быть больше местной круговой скорости, так как для нее верна  [c.104]

Мы получили опять дифференциальные уравнения задачи двух тел Р и Рз, записанные в комплексной форме, которая уже использовалась памп в уравнении (12 12). Эти уравнения имеют, в частности, круговое решение р = Ч = Р = р = д = Поэтому напрашивается преобразование переменных  [c.170]

ИЗ двух конечных тел к массе всей системы). Поиск семейств периодических орбит выполняется при данном значении ц,. Теоретически, для того чтобы доказать существование периодических орбит в ограниченной задаче, можно провести исследование при ,1 = О, а затем аналитически продолжить полученные результаты в область положительных ц. Такой подход, примененный впервые Пуанкаре, использовался и многими другими исследователями. Пуанкаре в своей работе, основанной на методе аналитического продолжения, разделил периодические орбиты ограниченной задачи на три класса. Орбиты первого класса рождаются из круговых орбит задачи двух тел (е = О, t = 0), орбиты второго класса рождаются из эллиптических орбит задачи двух тел (е О, t = = 0). Периодические орбиты третьего класса также рождаются из орбит задачи двух тел, но при отличном от нуля наклонении орбиты бесконечно малой частицы к плоскости движения основных тел е = 0, i фО). Другими словами, первые два класса орбит относятся к плоской ограниченной круговой задаче, а третий класс относится к пространственной ограниченной круговой задаче.  [c.161]


Задача 20. Дана сочлененная с помощью шарнира С система двух тел (рис. 79). Балка АС, изогнутая под прямым углом, имеет заделку в точке А. Круговая арка СВ закреплена в точке В с помощью стержня, имеющего на концах шарниры. На сочлененную систему действуют 1)силы, распределенные вдоль вертикального прямого отрезка АЕ  [c.111]

Пример 1 (Ограниченная задача ТРЕХ ТЕЛ (см. п. 124)). Пусть точка Р малой массы движется под действием притяжения двух точек S и J конечных масс, не оказывая влияния на движение последних. Будем считать, что точка J движется относительно точки S по круговой орбите, а точка Р движется в плоскости этой орбиты (т. е. рассматривается так на- Р с. 138 зываемая плоская круговая ограниченная задача трех тел).  [c.325]

В ближайших двух параграфах мы сделаем некоторые выводы из уравнения (7.3.8) для ограниченной плоской круговой задачи трех тел. Для простоты будем полагать, что нами выбрана каноническая система единиц, так что  [c.244]

Задача трех тел является модельной задачей в небесной механике, исследование которой позволяет объяснить ряд механических явлений в Солнечной системе. В некоторых моделях используется ограниченная круговая или эллиптическая задача трех тел, когда два массивных тел движутся по заданным кеплеровским орбитам в поле сил взаимного притяжения, а третье тело мало, не влияет на движение первых двух и движется в гравитационном поле, порожденном первыми двумя телами. В этих задачах тела рассматриваются как материальные точки.  [c.385]

Отметим существенное отличие в поведении условно-периодических решений в окрестности 4 и .5. В плоском случае любая точка из достаточно малой окрестности L и 5 при всех значениях ц, удовлетворяющих условию 27ц(1 —ц)< 1, кроме двух ([X = Ц1, [Х = Х2), порождает условно-периодическое решение. Другими словами, точки 4 и в устойчивы в смысле Ляпунова. В пространственной задаче большинство точек (но не все) из достаточно малой окрестности точек либрации порождают условно-периодические решения. Неясно, имеют ли условно-периодический характер решения, порождаемые точками, принадлежащими множеству малой (в смысле Лебега) меры, поэтому говорить об устойчивости по Ляпунову (или о неустойчивости) треугольных точек либрации в пространственной ограниченной круговой задаче трех тел преждевременно.  [c.845]

В ограниченной задаче движение двух тел с конечными массами Ш], и ГП2 относительно их барицентра считают известным, требуется определить движение тела с бесконечно малой массой тпъ. Для определенности будем полагать, что тъ Ш2<-гп. Если тела гп ж М2 с конечными массами движутся относительно своего барицентра по круговым орбитам, то имеет место круговая ограниченная задача трех тел. Эта задача может быть плоской, если все три тела движутся в инерциальном пространстве в одной плоскости. Таково, например, движение КА в плоскости эклиптики под воздействием Солнца и Земли, Пространственная задача возникает в том случае, когда плоскость движения тела бесконечно малой массы тъ не совпадает с плоскостью движения тел Ш], и М2. Примером пространственной круговой ограниченной задачи трех тел может служить движение КА под воздействием Земли и Луны при условии, что плоскость его движения не совпадает с плоскостью орбиты Луны (эта орбита предполагается круговой).  [c.208]

Сфера влияния. Наряду с использованием понятий сферы действия и сферы притяжения для приближенных расчетов траекторий движения КА в гравитационном поле двух небесных тел, существуют и другие принципы разделения пространства на области преимущественного воздействия каждого из двух небесных тел. Например, введенное в работе [32] понятие сферы влияния меньшего небесного тела относительно большего основано на использовании интеграла Якоби в круговой ограниченной задаче трех тел. Из условия минимизации ошибки приближенного расчета постоянной интеграла Якоби получена формула для вычисления радиуса сферы влияния  [c.248]

В этой главе мы проведем исследование устойчивости треугольных точек либрации для случая плоской эллиптической ограниченной задачи трех тел. По сравнению со случаем круговой задачи, рассмотренной в двух предыдущих главах, здесь задача очень усложняется, так как независимая переменная явно содержится в гамильтониане возмущенного движения.  [c.147]


Пытаясь разобраться в возможных типах движения в задаче трех тел, Пуанкаре, Хилл и другие ученые многие свои исследования посвятили так называемой ограниченной круговой задаче трех тел. В этой задаче два массивных тела движутся по окружностям вокруг общего центра масс и притягивают (но сами не притягиваются) третье тело бесконечно малой массы. Орбиты и массы двух массивных тел известны, и задача состоит в том, чтобы определить возможные движения третьего тела, если в некоторый момент времени заданы его координаты и скорость.  [c.146]

Таким образом, общая задача трех тел, описываемая девятью дифференциальными уравнениями второго порядка, сводится к трем дифференциальным уравнениям второго порядка, т. е. порядок системы понижается от 18 до 6. Если задачу ограничить еще больше, потребовав, чтобы третье тело двигалось в плоскости орбит двух массивных тел, то останется только два уравнения второго порядка, так что система будет иметь четвертый порядок. Такой частный случай называется плоской ограниченной круговой задачей трех тел. Из приведенных выше рассуждений становится понятным, почему пространственной и плоской ограниченной круговой задаче трех тел было посвящено большое число аналитических и численных исследований, хотя при такой постановке задачи мы волей-неволей лишаем себя воз.можности использовать десять известных интегралов движения. Однако при этом можно найти новый интеграл (впервые полученный Якоби), который будет полезен при исследовании поведения малой частицы.  [c.146]

Если два тела движутся по эллипсам вокруг их общего центра масс (ограниченная эллиптическая задача трех тел), то интеграла Якоби не существует. Однако заманчиво предположить (как часто поступают), что если эксцентриситет эллиптической орбиты одного тела конечной массы относительно другого мал, то результаты, полученные для круговой задачи, можно применять к эллиптической задаче на больших интервалах времени. Можно показать [241, что это действительно так. Более того, можно сказать, что прогноз движения, полученный при помощи интеграла Якоби, справедлив на интервале времени порядка нескольких периодов обращения двух тел конечной массы.  [c.155]

Введем дальнейшее упрощение в задачу, предполагая, что движение отдаленной точки Р известно с этой целью ограничимся наиболее замечательным случаем, в котором движение точки Р можно строго или, по KpaflHefr мере, приближенно рассматривать так, как если бы эта точка притягивалась только одной Землей. Тогда, если имеются в виду отдаленные тела, мы приходим к задаче двух тел, одно из которых есть точка Р, а другое — Земля, масса которой предполагается сосредоточенной в центре тяжести О в пп. 4 и 21 гл, 111 мы видели, что при таких условиях всегда возможны круговые движения (частный случай так называемого кеплерова движения), угловая скорость которых п связана с радиусом орбиты соотношением  [c.321]

А. Пуанкаре назвал периодические решения ограниченной круговой задачи трех тел, рождаюгциеся из эллиптических решений предельной задачи — задачи двух тел, периодическими решениями второго сорта [7]. При этом он указал на сугцествование симметричных семейств. Однако доказательства их сугцествования [7-9], использую-гцие только условие периодичности, были ошибочны [10-12.  [c.133]

При ц = О планетный вариант неограниченной задачи трех тел вырождается в две задачи двух тел (одна задача двух тел с массами то п ту = О, вторая задача двух тел с массами то и тг = 0). Очевидно, что среди возможных движений в вырожденной задаче имеются кеплеровские эллипсы, описываемые нулевыми массами т, = тг = 0. Пусть, в частности, кеплеровские орбиты суть компланарные окружности. Пуанкаре доказал [2], что при 11фО в плоской неограниченной задаче трех тел существуют периодические решения, близкие к круговым. Точнее, взаимные расстояния между тремя телами будут периодическими функциями времени, а чтобы координаты каждого тела были периодическими функциями времени, необходимо рассматривать равномерно вращающуюся (с конечной угловой скоростью) систему координат. В неподвижной системе координат координаты трех тел не будут, вообще говоря, периодическими функциями времени. Если ввести для таких периодических решений оскулирующий кинематический параметр — эксцентриситет, то он имеет порядок величины ц. Эти плоские перподиче-ские решения задачи трех тел были названы Пуанкаре решениями первого сорта, и они образуют четырехпараметрическое семейство решений. Пуанкаре показывает, что все множество периодических решений не богаче, чем однократное бесконечное множество периодических решений, так как одни семейства решений переходят в другие с помощью элементарных преобразований. Заметим также, что решение Хилла является частным случаем периодических решений первого сорта Пуанкаре.  [c.792]

Т. е. периоды обращения всех четырех тел будут одинаковы. Но это же невероятно Не могут четыре спутника, находящиеся на круговых орбитах разных радиусов, иметь одинаковые периоды обращения Но дело в том, что не могут — в задаче двух тел, а мы рассматриваем задачу трех тел, и теперь все обстоит иначе. Орбитальная скорость каждого искусственного спутника не равна местной круговой (относительно Земли) скорости. Так, например, круговая скорость в точке Ьг равна 1,11 км/с, а в точке 2—0,94 км/с, т. е. истинная скорость спутника в точке хменьше, ав точке 2 больше значения, полагающегося в задаче двух тел.  [c.104]

Предположим, что три тела, массы и обозначения которых т, m2, тг, движутся под действием взаимного притяжения, определяемого законом Ньютона, причем ms m2решением задачи двух тел, рассмотренной в главе 2, Обсудим круговую ограниченную задачу трех тел. Тела т и то движутся относительно своего барицентра по круговым орбитам, находясь по противоположные стороны от пего. Расстояние между ппмп остается постоянным.  [c.215]


В отличие от ограниченной задачи двух тел, где постоянны энергия непритягивающего тела и его момент количества движения, в круговой ограниченной задаче трех тел оказывается постоянной некоторая функция этих величин, определяемая соотношением  [c.221]

Следовательно, но теореме существования 14 корням Аз = г, Ае = —i соответствует однонараметрическое семейство периодических решений уравнений (27), лежащих вблизи равновесного решения и имеющих период, приблизительно равный 2тг. Но эти решения уже известны они бьши найдены как обобщенные решения Лагранжа в конце 12, когда искались частные решения с эллиптической орбитой, близкие к круговым решениям Лагранжа. Используя известные формулы для решения задачи двух тел, легко установить, что при фиксированном значении постоянной интеграла площадей г>4 существует еще одно семейство эллиптических решений, параметром которых можно выбрать период т. Если положить с = os t — И4), 3 = 81п(4 — М4), то из уравнений (12 3), (12 4), (9) и (24) получается  [c.162]

В разделе 11.3.6 был проведен элементарный анализ влияния ошибок импульса на элементы орбиты перехода в поле одного притягивающего центра. Точно так же можно выразить ошибки гиперболической орбиты освобождения (см. разд. 11.4.1) через Ошибки импульса, прикладываемого на исходной круговой орбите. Воспользовавшись ooтj oшeниями (11.86) —(11.92), можно определить ошибки 1у, фу, К и г, а затем, применяя соответствующие уравнения задачи двух тел, можно получить ошибки элементов гелиоцентрической орбиты перехода и т. д.  [c.375]

Задача С . Пусть круговой цилиндр г R, 2 /г из нелинейноупругого изотропного несжимаемого материала равномерно сжат или растянут силами, приложенными к боковой поверхности г — R. Торцы цилиндра свободны от нагрузки. На описанную однородную конечную деформацию накладывается малая деформация, обусловленная внедрением в торцы цилиндра при г а двух симметрично расположенных круговых штампов. Трение между штампами и упругим телом отсутствует, а на боковой поверхности цилиндра г = R заданы условия отсутствия касательных напряжений и нормальных перемешений (см. рис. 2.6 на стр. 79). В силу предположений о малости добавочной деформации контактная задача рассматривается в линеаризованной постановке.  [c.23]

Следуя методу Хилла, примененному в круговой задаче трех тел, ограничимся первыми членами разложения, а именно рассмотрим задачу двух неподвижных центров без учета параллакса возмущающего тела, т.е. исследуем движение материальной точки в силовом поле  [c.525]

Полагая в уравнениях (17), (18) z ri О, получим дифференциальные уравнения движения спутника в ограниченной плоской круговой задаче трех тел. Так как при г О третье из уравнений (18) превращается в тождество 0 = 0, то рассматриваемая плоская задача описывается системой диффере1щиальпых уравнений четвертого порядка относительно двух вещественных ( зуикций х (/) и у (/).  [c.234]

Теоремы о необратимости и симметрии в пространственной ограниченной круговой задаче трех тел. Если в какой-то области пространства движение спутника двух притягивающих центров Ai, т ) и (Лз, апз) nii <С щ) возможно, то, разумеется, он может двигаться не по любой кривой из этой области и не в любом направлении. На следующие любопытные элементарные факты обратил внимание американский ученый А. Миеле (Miele).  [c.259]

Проблема захвата. Большой интерес для космонавтики представляет следуюш,ая проблема захвата в ограниченной круговой задаче трех тел может ли не-притягиваюш,ая материальная точка (например, космическая ракета), пришедшая из бесконечности в некоторую ограниченную область Л пространства, где она подвергается притяжению двух звезд , остаться навсегда в этой области  [c.260]

Ниже исследуется ограниченная круговая задача трех тел, когда третье малое тело предполагается сферически симметричным и деформируемым, его центр масс движется в плоскости круговых орбит двух первых тел, а враш,ение вокруг центра масс происходит вокруг нормали к плоскости движения центра масс. Суш,ественным обстоятельством, влияюш,им на эволюцию движения малой сферически симметричной деформируемой планеты является рассеяние энергии нри ее деформациях, что приводит к эволюции ее орбиты и угловой скорости враш,ения. Поскольку нреднолагается, что массы двух тел (для Солнечной системы это могут быть Солнце и Юпитер) относятся как один к /i, (/i <С 1), то эволюция движения деформируемой планеты разбивается на два этапа. На первом этапе быстрой эволюции орбита деформируемой планеты стремится к круговой с центром в массивном теле, а ее враш,ение совпадает с орбитальным (режим гравитационной стабилизации, резонанс 1 1). При этом планета оказывается деформированной (сплюснутой по полюсам и вытянутой вдоль радиуса, соединяюш,его планету с массивным телом) [1, 2]. На втором этане медленной эволюции учитывается влияние планеты с массой /i, что приводит к эволюции круговой орбиты деформируемой планеты. Согласно полученным ниже уравнениям, описываюш,им эволюцию круговой орбиты, ее радиус стремится к радиусу тела массы 1, т. е. он возрастает, если деформируемое тело находится внутри орбиты тела массы /i, или убывает в противном случае. На конечном этане медленной эволюции, когда орбиты деформируемой планеты и тела массы 1 становятся близкими, возможен захват деформируемой планеты пла-  [c.385]

A. A. Каминского (1965 и сл.). При рассмотрении задачи о произвольном числе симметрично расположенных трещин, выходящих на свободную поверхность кругового-отверстия в бесконечном теле, О. Л. Бови применил для отображения такой области на внешность единичного круга приближенное представление аналитической функции полиномами, после чего стало возможным применение методов Н. И. Мусхелишвили. Проведенные им конкретное расчеты для простейших случаев одной и двух диаметрально противоположных трещин потребовали большого объема вычислительных работ, так как для достаточной точности оказалось необходимым удерживать около тридцати членов полиномиального разложения. А. А. Каминский существенно усовершенствовал метод Бови, добившись гораздо лучшей сходимости при замене отображающей функции такой рациональной функцией, которая, сохраняя особенность на концах трещин, скругляет углы в местах выхода трещины в полость. Им получены простые формулы) для определения величины предельной нагрузки в упомянутой задаче-о пластине, ослабленной круговым отверстием с двумя равными радиальными трещинами. Используя этот метод, Н. Ю. Бабич и А. А. Каминский (1965) построили решение задачи для одной прямолинейной трещины, а А. А. Каминский (1965) — для двух прямолинейных трещин, выходящих на контур эллиптического отверстия (здесь же приведены результаты, расчетов критической нагрузки в зависимости от длины трещины). В дальнейшем А. А. Каминский (1966) получил решение задач для случая, когда одна или две равные трещины выходят на контур произвольного-гладкого криволинейного отверстия при одноосном или всестороннем растяжении, и определил критические нагрузки, вызывающие развитие расширенных трещин. Г. Г. Гребенкин и А. А. Каминский (1967) в качестве примера произвели расчет критических нагрузок для двух равных трещин, выходящих на контур квадратного отверстия. В. В. Панасюк (1965) рассмотрел задачу Бови о круговом отверстии с двумя радиальными трещинами разной длины, выходящими на границу отверстия. При определении нормальных напряжений используется приближенный метод, аналогичный методу последовательных приближений, развитому в работах С. Г. Михлина (1935) и Д. И. Шермана (1935). Сравнение с решением О. Л. Бови для двух трещин одинаковой длины дает удовлетворительное совпадение. Некоторые результаты относительно влияния свободной границы полупространства на распространение терщины были получены ранее в работах Ю. А. Устинова (1959) и В. В. Панасюка (1960).  [c.382]


Обычно расчет на контактную прочность колес рассматриваемого типа проводится по аналогии с расчетом прямозубых конических колес. Однако расчет на контактную прочность конических колес с прямыми зубьями ведется на основе решения плоской контактной задачи для случая касания поверхностей двух цилиндров. Но поверхности сопряженных круговых зубьев имеют кривизну в двух направлениях (кривизна октоидального профиля зуба и кривизна вдоль зуба), и поэтому расчет таких зубьев на контактную прочность необходимо проводить как решение пространственной контактной задачи, для случая начального касания двух тел в точке.  [c.148]

В математическом плане задачи теории упругости для тел с разрезами родственны контактным задачам. В некоторых случаях существует прямая аналогия, которая позволяет при помощи известного решения контактной задачи сразу построить решение соответствующей задачи для тела с разрезом, и наоборот. Например, классическая задача о давлении гладкого штампа с плоским основанием произвольной формы в плане на границу полупространства с точностью до знака совпадает с задачей о растяжении и изгибе бесконечного упругого пространства с плоской щелью, занимающей внешность площадки контакта (естественно, в той же плоскости). Так," задача о давлении торца жесткого гладкого кругового цнлиидра на полупространстве аналогична задаче для пространства с плоским разрезом, расположенным вне кругового диска. Другие примеры прямой математической аналогии этих двух классов задач читатель легко составит самостоятельно.  [c.261]

Однако один частный, или, лучше сказать, специальный случай ограниченной круговой задачи трех тел оказывается вполпе интегрируемым, и общее решение задачи в этом специальном случае может быть написано в квадратурах. Мы имеем в виду так называемую задачу двух неподвижных центров, которая была проинтегрирована еще Эйлером и с тех пор неизменно привлекала к себе внимание многих механиков и математиков. Задача двух неподвижных центров заключается в определении движения материальной точки нулевой массы , притягиваемой двумя конечными неподвижными точечными массами, но не оказывающей на них никакого влияния. Поэтому эту задачу можно рассматривать как специальный случай ограниченной задачи, в котором только две конечные массы остаются неподвижными, не только в относительной, но и в неизменной системе координат.  [c.774]

Работа [127] полностью исчерпала проблему устойчивости треугольных лагранжевых решений в плоской ограниченной круговой задаче трех тел. Б [128] А. П. Маркеев исследовал устойчивость треугольных равновесных решений в пространственной ограниченной круговой задаче трех тел. Им доказано, что для большинства начальных условий (в смысле меры Лебега) при всех значениях ц, удовлетворяющих условию (10.3.40), кроме двух значений, ц = Х], ц = хг из совокупности (10.3.43), треугольные точки либрации устойчивы. При ц = [Х1 и ц = 112 имеет место неустойчивость.  [c.845]

В главах седьмой — десятой решается задача об устойчивости треугольных точек либрации ограниченной задачи трех тел. В главе 7 рассмотрен случай плоской круговой задачи. Наиболее существенное исследование устойчивости в этом случае раньше было проведено Леонтовичем и Депри. В их работах [37, 111] для решения задачи устойчивости применялась теорема Арнольда — Мозера и не были исследованы те случаи, когда эта теорема неприменима. В главе 7 при помощи результатов главы 4 задача об устойчивости треугольных точек либрации решена полностью. Показано, что в области устойчивости в первом приближении точки либрации действительно устойчивы по Ляпунову, за исключением двух значений параметра [г, при которых имеет место неустойчивость. Эти значения и [Хг соответствуют резонансам сох = Зсоа и (01 = 3(02 между частотами линейной системы.  [c.13]


Смотреть страницы где упоминается термин Задача двух тел круговая : [c.88]    [c.169]    [c.488]    [c.225]    [c.275]    [c.390]    [c.795]    [c.126]    [c.205]    [c.129]    [c.76]    [c.247]   
Элементы динамики космического полета (1965) -- [ c.259 ]

Основы механики космического полета (1990) -- [ c.208 , c.215 , c.220 ]



ПОИСК



Задача двух тел

Разложение возмущающей функции в задаче о движении двух планет (случай круговых орбит)



© 2025 Mash-xxl.info Реклама на сайте