Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линия контроля (измерения)

В ГОСТ 16263—70 выделены следующие общие для средств измерений структурные элементы преобразовательный и чувствительный элементы, измерительная цепь, измерительный механизм, от-счетное устройство со шкалой и указателем и регистрирующее устройство. Кроме того, контактные измерительные приборы обычно снабжены одним или несколькими наконечниками. Измерительный наконечник — элемент в измерительной цепи, находящийся в контакте с объектом контроля (измерения) в контрольной точке под непосредственным воздействием измеряемой величины. Базовый наконечник — элемент измерительной цепи, расположенный в плоскости измерения и служащий для определения длины линии измерения. Опорный наконечник — элемент, определяющий положение линии измерения в плоскости измерения. Координирующий наконечник — элемент, служащий для определения положения плоскости измерения на объекте контроля (измерения).  [c.113]


Схема регистрации излучения—счетная, с последующим вводом информации в специализированную ЭВМ Сигнал . Система автоматики осуществляет измерение текущих координат на линии контроля и раскроя, управление рольгангом перед ножницами и за ними. Все процессы синхронизируются по командам из ЭВМ, установленной в операторском помещении.  [c.153]

Полная акустическая мощность, излучаемая оболочкой, была измерена при помощи радиометра, плоский диск которого помещался на 1,6 см ниже фокальной плоскости, где при полной мощности кавитация еще не возникает, Для контроля измерения производились как диском с поглощающей поверхностью, так и диском с отражающей поверхностью. Результаты измерений показаны на рис. 47, где по оси абсцисс отложен квадрат напряжения в киловольтах, подводимого к кварцевым пластинам черные кружки — поглощающая поверхность, светлые — отражающая. Все точки удовлетворительно укладываются на прямую линию. Однако для получения абсолютного значения мощности нужно внести еще поправку на сферичность сходящегося фронта как видно из снимка, полученного методом Теплера (рис. 46), на расстоянии пяти длин волн, что соответствует 1,6 см, фронт еще полностью сохраняет свою сферическую форму. Плоский диск измеряет лишь нормальную компоненту, которая, как это следует из фор-  [c.196]

Газовые котельные (отдельно стоящие). Общий аварийный сигнал о нарушении работы газовой котельной. Дистанционное измерение температуры теплоносителя в общей прямой и обрат ной линиях. Контроль понижения и превышения давления в обще. обратной линии.  [c.203]

В объединенной сливной гидролинии установлены фильтр 19 с переливным клапаном, охладитель 20 рабочей жидкости, а в баке — датчик 21 дистанционного измерения температуры. Контроль давления в напорной и сливной линиях насосов осуществляется манометрами 22.  [c.79]

Для контроля и измерения давления и температуры среды на трубопроводах предусматриваются штуцера с импульсными линиями к приборам или гильзы для различных термометров, термопар и т. д.  [c.121]

Проверка этой формулы показала, что расхождение между экспериментальными и расчетными данными не превышает 1 % абсолютного значения П. Она может быть рекомендована для расчета и проверки тарировочных графиков при изменении П в диапазоне О—30 %. Для проведения контроля могут использоваться измерительные устройства из типовых элементов и узлов, например, простая схема для фазовых измерений с индикацией посредством измерительных линий. Связь между е и с-смеще-нием минимума (узла) стоячей волны в измерительной линии будет е =  [c.247]


Дефектоскоп ВД-40Н состоит из сканирующего механизма с ВТП и стационарной электронной стойки (рис. 74). При осевом перемещении объекта контроля преобразователя описывают винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения ВТП, их числом и шириной зоны контроля каждого из них. В приборе используются два ВТП и два измерительных канала соответственно. Структурная схема каждого из каналов отличается от схемы каналов дефектоскопа ВД-ЗОП тем, что здесь способ проекции используется для уменьшения влияния зазора. Кроме того, имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный от одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канале и служит для управления коэффициентом передачи основного измерительного канала. Таким образом, сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет вы-  [c.144]

В условиях автоматизированного производства все больше внедряются комплексные линии неразрушающего контроля качества изделий. Особенностью построения и применения этих линий является сочетание различных физических методов для одновременного измерения нескольких характеристик качества изделий в потоке их производства при полной автоматизации процессов контроля и сортировки. При создании таких линий по единому типовому проекту значительно упрощается обслуживание системы контроля, сокращаются производственные площади на участках отделки и появляется возможность перейти к автоматическому управлению технологическим процессом по результатам оценки качества изделия [2].  [c.323]

Выполненные измерения шага линий и последующий их пересчет в число полетов показали, что длительность роста трещины в валу составила около 630 полетов ВС. К моменту разрушения наработка вала с начала эксплуатации составила 4333 полета. Следовательно, относительный период роста трещин в валу от дефекта материала составил (630/4333) 100 = 15 %. Полученная оценка относительного периода роста трещины согласуется с представлением о развитии разрушения в вале трансмиссии в области многоцикловой усталости. Более того, отсутствие несплошности в материале гарантирует более продолжительную эксплуатацию вала без возникновения в нем усталостной трещины, чем это имело место в рассматриваемом случае. Поэтому применительно к данной детали не было никаких оснований рекомендовать периодический контроль в эксплуатации с целью выявления трещин в валах. Достаточно было ограничиться рекомендациями по выявлению несплошностей в валах как на стадии их изготовления, так и в процессе ремонта, поскольку рассмотренный вал за время эксплуатации ремонтировали дважды.  [c.708]

Электроды сравнения для контроля потенциала опускают на прочном лине возможно ближе к стенке корпуса судна целесообразно утяжелить этот электрод грузом свинца массой 20 кг. Ввиду хорошей электропроводности морской воды погрешностью от омической составляющей по формуле (2.34) можно пренебречь. В отличие от пресных вод при измерениях потенциала в морской воде схемы с выключением и эли-  [c.363]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]


При поточном изготовлении деталей промежуточные склады отсутствуют и детали ритмично движутся по поточной линии, непрерывно питая сборочный конвейер, но прежде чем попасть на него, подвергаются контролю. Для проверки ритмично поступающих деталей контролер обязан успевать производить все положенные измерения за период между очередным поступлением деталей. Производительность контрольных приборов в этом случае должна соответствовать ритму обрабатывающей линии.  [c.261]

Наибольший интерес представляют системы контроля точных размеров, а также комплексные системы контроля, охватывающие все стадии технологического процесса. В системах активного контроля, предназначенных для использования в автоматических комплексах из агрегатных станков, при выполнении расточных операций с жесткими допусками в целях компенсации погрешностей измерения, возникающих из-за изменения температуры окружающей среды, на измерительных позициях устанавливают калиброванные кольца, изготовленные из того же материала, что и обрабатываемая деталь. Измерительная головка контролирует диаметры обрабатываемого отверстия и калиброванного кольца. Результаты измерения обоих диаметров передаются в электронный блок сравнения. Поле допуска разделено на четыре зоны, расположенные симметрично относительно средней линии, которой соответствует размер калиброванного кольца. Две внутренние зоны составляют по 30 % от поля допуска, две наружные зоны — по 20 %. При эксплуатации комплекса границы зон могут быть сдвинуты. Если разность сигналов свидетельствует о том, что фактический размер обработанного отверстия укладывается в границы внутренних зон, то сигнал на подналадку резца  [c.10]

Обеспечение возможности контроля размеров деталей на АЛ. В ряде случаев целесообразно осуществлять контроль корпусных деталей вне автоматической линии. В этом случае измеряемую деталь выдают на контрольный стенд, оснащенный полуавтоматическими или автоматическими измерительными устройствами. Объем выборки при таком контроле определяют в зависимости от состояния технологического процесса. При таком методе контроля можно создать лучшие условия для достижения необходимой точности измерения.  [c.98]

При такой схеме случайные перемещения детали по линии измерения. вызванные силами резания или тепловыми явлениями, не влияют на результаты контроля. Влияние перемещений детали перпендикулярно линии измерения в значительной степени устраняется за счет параллельности измерительных наконечников. Двухконтактные скобы с помощью подводящего устройства 8 обычно крепят на столе станка и контролируют деталь в одном сечении. Прямолинейная траектория ввода и вывода устройства позволяет наиболее просто автоматизировать эту операцию.  [c.131]

При такой наладке измерительной головки погрешность контроля, вызванная случайными перемещениями контролируемой детали в направлении линии измерения, будет минимальной.  [c.226]

В соответствии с ГОСТ 16504—81 геометрический объект контроля содержит одну или несколько контрольных точек. Введем дополнительные термины, необходимые для оценки результатов контроля (измерений). Зона контроля (измерения) — область взаимодействия средства контроля (измерения)с объектом контроля (измерения). Контролируемая измеряемая) поверхность — поверхность объекта контроля (измерения), на которой расположена одна или несколько контрольных точек. Линия контроля измерения) — прямая, проходящая через контролируемый (измеряемый) размер. Плоскость контроля измерения) — плоскость, проходящая через линию контроля (измерения) и выбранную линию расположенпя контрольных точек.  [c.113]

Станция катодной защиты — это устройство для катодной поляризации защищаемых конструкций с помощью внешнего тока. Они представляют собой комплекс, состоящий из источника постоянного тока с двумя основными линиями для поляризации анодов и для катодной защиты конструкции. Линии контроля потенциалов и защитного заземления являются вспомогательными. К станции относятся также электроизмерительные приборы, защита от атмосферного электричества, автоматическое регулирование разности потенциалов конструкция — земля в местах дренажа, телеконтроль, защита от попадания под напряжение обслуживающего персонала, приборы для измерения скорости коррозии и др.  [c.67]

Примером современных методов автоматизации производства служат автоматические линии. Такая линия представляет собой комбинацию транспортирующих механизмов, механизмов, выполняющих индивидуальные рабочие операции, контрольного поста, а также устройства для автоматического управления, частью которого является автоматическая счетная мащина. Деталь, например блок цилиндров, входит с одного конца автоматической линии, последовательно проходит различные операции обработки (сверление, развертку, зенкерова-ние и т. п.) и контроля (измерение отверстий калибрами и т. п.) и в готовом виде выходит с другого конца линии. Передача детали от одной позиции к другой, разворот, фиксация и зажим ее во всех рабочих позициях осуществляются при помощи гидравлических устройств, которые управляются электроприборами, установленными на центральной контрольной панели.  [c.336]

Встроенные газовые и угольные котельные. Дистанционное измерение температуры теплоносителя в оО щей прямой и обратной линиях. Контроль понижения и превышенк > давлеп1 я в общей обратной линии. Двухсторонняя громкоговор .-щая связь из котельной.  [c.203]


Резонатор, имеющий диаметр 50 мм, является основной частью установки. Для настройки резонатора в резонанс с частотой колебаний клистрона длина резонатора может изменяться путем перемещения подвижного поршня, управляемого ручкой штурвала. Крышка резонатора имеет специальное углубление для испытываемых образцов диэлектриков. Электромагнитная волна, возникшая в резонаторе, в свою очередь через отверстие диаметром 7 мм распространяется в волноводной измерительной секции 4, в которой расположен рабочий кристаллический детектор 5. Проде-тектированные колебания от детектора через переключатель Контроль-измерение подаются на вход усилителя низкой частоты. Усилитель содержит четыре каскада усиления с общим наибольшим коэффициентом 10 . Выход усилителя нагружен на вертикальные отклоняющие пластины электроннолучевой трубки индикатора. На горизонтальные пластины трубки подается развертывающее напряжение Up от генератора развертки. Это же напряжение подается в качестве дополнительного напряжения на отражатель клистронного генератора для регулирования напряжения отражателя i/o- В результате частота клистронного генератора изменяется в такт с изменением развертывающего напряжения Up осциллографа. Каждая точка линии развертки на экране осциллографа соответствует определенному значению частоты клистрона. Частота колебаний клистрона изменяется линейно в зависимости от напряжения развертки i/o- Таким образом, на экране осциллографа по горизонтальной оси X получается в некотором масштабе частота, по оси Y — значение амплитуды колебания клистронного генератора в резонаторе на данной частоте.  [c.48]

В связи с повышением производительности машин и скоростей движения отдельных их органов, а также в связи с требованиями к высокому качеству изделий человек стал испытывать непреодолимые затруднения в управлении машинами, контроле технологических процессов, выполняемых машинами, измерении отдельных параметров выпускаемой продукции и т. д. В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерения параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления процессами и их контроля. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподи]ипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.13]

Рассмотрим несколько характерных примеров использования положений принципа инверсии. После изготовления ступенчатого вала Д редуктора (см. рис. 11.4) необходимо выбрать схему контроля радиального биения поверхности А с помощью показывающего измерительного прибора И (рис. 6.3, а). В качестве метрологических баз следует выбрать поверхности В и В, поскольку по ним происходит контакт вала с опорными подшипниками, а использование в качестве метрологических баз линии центров С—С или поверхностей D—D приводит к возникновению дополнительных погрешностей, вызванных несоосностью этих элементов относительно базовых поверхностей В—В. В осевом направлении в качестве базирующего элемер1та следует выбрать поверхность (а не С или С), поскольку она определяет осевое положение вала (от этой поверхности целесообразно проставлять линейные размеры L). При вращательном движении вала в процессе измерения его траектория соответств ет траектории движения при эксплуатации. При базировании на призмах  [c.140]

В свою очередь использование в качестве оптических или лучевых створов зоризонтально расположенных линий предусматривает совмещение створных измерений с контролем положения рельсов в вертикальной оггоскости.  [c.41]

При контроле прямолинейности может возникнуть задача восстановления направления непросматриваемого створа (рнс.22) с целью приведения результатов периодических измерений к единой системе отсчетов. Для этого можно воспользоваться предложенным в работе [43] способом, сущность которого заключается в построении вспомог ательного створа А/В/, примерно параллельного перекрытому створу АВ. От этого створа измеряют расстояния 01,02, аз, а4 до крайних точек сгвора и двух вспомогательных точек О и С, расположенных по обе стороны препятствия (например, крана) и находящихся примерно но направлению перекрытого створа. От линий АО и ВС измеряют абциссы ( = , р,] = г,п ) до  [c.47]

Координатная марка 7 с цилиндрическим уровнем 8 служит для одновременного, с измерением ширины колеи, нивелирования рельса и контроля его прямолинейности. Для этого в конце рельса на специальном штативе устанавливают нивелир и центрируют его по оси рельса. Приводят визирную ось в горизонтальное положение и визируют на марку 7, установленную в другом конце рельса. Перемещают марку по вертикали до получения нулевого отсчета по ее вертикальной шкале и наводят вертикальную нить сетки на нуль юризонтальной шкалы марки. Последовательно перемещая кран в контрольные точки, измеряют ширину колеи и берут отсчеты по марке 7, которые будут соответствовать превышениям и отклонениям оси рельса от прямой линии. Затем в обратном порядке производят нивелирование второго рельса, устанавливая на нем стойку с маркой 7. Отклонения оси второго рельса от прямой линии вычисляют известным способом.  [c.69]

Преобразователь выполнен в виде корпуса, в котором размещены подпружиненные токовые электроды, ферроэлемент с механизмом перестройки ориентации его оси относительно линии, соединяющей точки касания с металлом токовых электродов. В преобразователе предусмотрены направляющие, обеспечивающие фиксацию его во впадине зуба между зубьями заданного модуля. Токовые электроды при этом фиксируются на смежных поверхностях профиля зуба выше средней линии на 1—2 мм. При прохождении преобразователя над трещиной, расположенной вдоль впадины у ножки зуба, результирующее магнитное поле деформируется, появляется поперечная тангенциальная составляющая, воздействующая на сердечник ферроэлемента. Критерии оценки состояния поверхности зуба шестерни — амплитуда и фаза огибающей, которая детектируется, усиливается и сравнивается с опорным сигналом. При незначительном изменении сигнала отклоняется стрелка микроамперметра и включается световой индикатор. На результаты контроля не оказывает влияния смазка, однако окалина, ржавчина и краска должны быть удалены с поверхности изделия. Глубина и ширина дефекта определяются как среднеарифметическое значение результатов трех измерений. Обнаруживаются трещины длиной от 20 мм, глубиной от 0,5 мм до сквозных, выходящих на противоположную поверхность зуба. За один проход вручную контролируется вся поверхность впадины зуба, ограниченная линиями, образуемыми точками касания токовых электродов.  [c.123]


Метод отслаивания. В испытании на отслаивание тоже используется стягивающее усилие, перпендикулярное к поверхности покрытия. Этим методом производят контроль металлических покрытий на пластмассах. Испытания проводят на специально подготовленных образцах с ровной плоской поверхностью. На поверхность наносят толстослойное эластичное медное покрытие после осаждения металла химическим методом на пластмассу. Целью испытания является измерение связи между осадком металла, полученным химическим путем, и основным материалом — пластмассой, так как эта связь зависит от процессов предварительной обработки пластмассы, а также от ее физического состояния. На расстоянии 25 мм друг от друга (или некотором другом) наносят две параллельные линии. Они должны проходить сквозь электроосаждаемый слой меди (толщиной 15 мкм) и слой металла, полученный в результате химического осаждения, достигая пластмассы. Кусок полоски металла между линиями, отслоенный с помощью лезвия, вводимого между покрытием и основным материалом со стороны кромки образца, захватывается в тисках разрывной машины, а образец жестко закрепляется. Нагрузка, требуемая для отслаивания металла от пластмассы, считается величиной отслаивания . Во время испытания необходимо сохранять направление действия растягивающего усилия под углом 90° к поверхности образца. Это осуществляется с помощью соответствующих тяг в устройстве для испытаний.  [c.151]

Общим методом анализа качества изделий, как уже было сказано, является количественный контроль важнейших параметров в процессе изготовления деталей (например, контроль размеров, шероховатости обработанной поверхности и т. д.) с последующим построением диаграмм, отражающих точность и стабильность технологических процессов, и выявлением факторов, обеспечивающих заданные качество и его стабильность. Так, при анализе точности обработки и ее изменении во времени должны фиксироваться все моменты вмешательства человека для поддержания параметров технологического процесса в заданных пределах (измерения заготовок и деталей в процессе обработки, размерная подиаладка механизмов, смена и регулировка инструмента, очистка рабочей зоны от стружки и загрязнений, отбраковка и возврат деталей и полуфабрикатов и т. д.). Анализ этих функций с учетом их замещения при автоматизации позволяет предвидеть, как отразится намечаемая автоматизация на качестве изделий. Во многих случаях желательно проведение эксперимента с имитацией в поточной линии ситуации, ожидаемой после автоматизации загрузочных операций.  [c.171]

Для контроля матовых поверхностей с нерегулярно расположенными микронеровностями (например, штамповка) акад. Линник предложил микропрофи-лометр, вытягивающий нерегулярные неровности в одну прямую линию, на которой и производится измерение Н р.  [c.293]

Для определения расхода объемным методом использовался оттарированный бак 9 со стеклянным уровнемером, связанный по линии нейтрализации с рабочими баками 8 с целью уравнивания давлений. Погрешность измерения объемным методом не превышала 0,8%. Первый способ использовался для постоянного контроля.  [c.39]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]

Для выявления эффективных функций управления предварительно исследовалась работоспособность линии, что позволило выделить ряд функций АСУТП, реализация которых должна была повысить производительность линии. Далее проводилось производственное моделирование работы АСУТП, заключающееся в имитации работы линии при выполнении выделенных функций системы управления исследовательской группой, оснащенной необходимыми средствами измерения и контроля.  [c.54]

При диагностировании механизмов суппортной группы токарных многошпиндельных автоматов удобен динамический способ, основанный на измерении крутящих моментов на РВ, его сущность описана выше. Измерение этого параметра производится с помощью съемных первичных преобразователей со встроенными микроусилителями [22]. В качестве примера на рис. 7.1 приведены типовые динамограммы дефектов (пунктирные линии) механизмов поперечных суппортов автомата модели 1А225-6 и его модификаций 1 — нестабильное включение муфты ускоренного хода 2, 3,4 — увеличение нагрузок на привод при отводе и подводе суппортов из-за повышенных сил трения в кулачковых механизмах и клиньях направляющих 5,6 — преждевременное переключение фрикционной муфты 4, 6 — неравномерность перемещения суппортов на рабочей скорости из-за дефектной регулировки клиньев в направляющих суппортов. Здесь же для сравнения сплошными линиями нанесены нормативные осциллограммы. Динамограммы дефектов механизмов представляют собой части осциллограмм крутящих моментов, записанных на отдельных участках цикла работы станков, которые имеют определенные дефекты в узлах. Дефекты создавались также искусственно путем разрегулировки механизмов у одного станка. Датчик крутящего момента устанавливается при проверке поперечных суппортов на свободном участке продольного РВ между коробкой передач и шпиндельной стойкой. Запись момента осуществляется при холостом ходе станка. При необходимости контроля станков с технологическими наладками крутящий момент записывается при полном цикле их работы. Зная оптимальные величины нагрузок для каждой наладки, можно оценить качество технологического процесса изготовления  [c.114]

Ввиду опасных и вредных условий в кузнечных и прессовых цехах (не менее чем в литейных цехах) актуальна комплексная автоматизация, включающая диагностирование кузнечно-штамповочного оборудования. В штамповочном производстве для изготовления деталей из рулона, листа или ленты широко применяются одно- и многопозиционные прессы различных типов, манипуляторы, роботы, поворотные столы и транспортеры. Вопросы диагностирования поворотных столов, транспортеров, манипуляторов и роботов были рассмотрены выше. Специфичным для этих линий, как и для ряда литейных, является диагностирование прессов. У прессов с электроприводом целесообразно применение датчиков крутящего момента, с помощью которых контролируется характер изменения нагрузок на коленчатый вал как при холостых, так и при рабочих перемещениях ползуна. Запись частоты вращения или скорости этого вала позволяет обнаруживать разрегулировку и износ фрикционной муфты. Датчик остановки ползуна в верхней мертвой точке дает дополнительную информацию о работе муфты и коман-доаннарата [54]. Широко применяется измерение напряжений в станине пресса с помощью тензометрических датчиков (с целью предотвращения поломок, своевременной смены инструмента). Здесь целесообразно использовать микроусилители, расположенные в месте измерения напряжений. Ударные нагрузки при вырубке, пробивке отверстий и т. п. можно определять с помощью пьезоакселерометров, установленных на ползуне пресса. Диагностирование гидросистем и привода гидравлических прессов мало чем отличается от рассмотренных выше методов, разработанных для другого автоматического оборудования. Здесь ввиду ударного характера рабочих нагрузок требуется контроль энергии удара и предъявляются более высокие требования к частотным характеристикам датчиков и аппаратуры. Большие размеры прессов и рас-  [c.150]


Автоматизированные измерения осуществляются путем использования контрольно-сборочных инструментов и приспособлений, автоматически обеспечивающих создание необходимых для контроля сил, крутящих моментов, давлений и пр. В качестве примера можно указать на автоматы, предназначенные для контроля радиального зазора полусобранных подшипников качения в процессе их сборки. Принцип измерения в автоматах электро-пневматический, точность 0,001 мм. Такие автоматы встраивают в линию сборки подшипников. В случае несоответствия радиального зазора требованиям соответствующий подшипник автоматически отбраковывается и удаляется со сборки.  [c.57]


Смотреть страницы где упоминается термин Линия контроля (измерения) : [c.532]    [c.431]    [c.140]    [c.141]    [c.142]    [c.333]    [c.247]    [c.325]    [c.257]    [c.302]    [c.97]    [c.237]    [c.285]    [c.234]   
Взаимозаменяемость, стандартизация и технические измерения (1987) -- [ c.113 ]



ПОИСК



Контроль измерением



© 2025 Mash-xxl.info Реклама на сайте