Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Погрешность измерения динамическая

Как показано выше, инерционность измерительной системы СИ и измеряемого процесса из-за конечного времени переходного процесса превращения (преобразования) различных видов энергии (механической, топливной, электрической и др.) приводит к динамическим погрешностям измерений. Динамические погрешности наиболее суш,ественны и опасны (в смысле искажения измерительной информации) при измерении быстропеременных процессов. Например, скорость изменения давления в цилиндрах двигателя внутреннего сгорания достигает 100 ООО кгс/см с ( 10" Па/с), а в топливоподающих трубопроводах дизелей — 500 ООО кгс/см с ( 5/10" Па/с). Поэтому важное значение имеет выбор соответствующей аппаратуры для регистрации этих изменений.  [c.204]


При анализе погрешностей измерений динамических температур и тепловых потоков не рассматривалось влияние излучения и скорости изменения параметров среды на показания регистрирующего прибора. Подробно этот вопрос изложен в [23, 114]. Здесь приведем лишь основные формулы для расчета скоростной погрешности измерений и погрешности из-за излучения.  [c.75]

Погрешности. Источниками погрешностей измерения динамической твердости в соответствии с существующими классификациями являются объект измерения, т.е. образец испытуемого материала прибор для измерения твердости условия проведения измерений.  [c.208]

Рассмотренные выше метрологические характеристики средств измерений позволяют оценить их пригодность для измерений величин, не меняющихся во времени (в статических условиях). В исследовательской практике очень часто возникает необходимость в измерении (или преобразовании) величин, меняющихся во времени. Результаты таких измерений искажены дополнительной погрешностью, которая возникает только при измерении меняющихся во времени величин (в динамических условиях). Эта составляющая погрешности измерений носит название динамической погрешности и представляет собой разность между погрешностью средств измерений в динамических условиях и соответствующей погрешностью в статических условиях.  [c.137]

Проведение измерений в многофазовых потоках затрудняется тем, что такие течения в общем случае характеризуются структурной неоднородностью, термической и динамической неравновесностью, т. е. компоненты, составляющие среду, могут иметь различные температуру и скорость при переменном поле концентрации фаз и различных структурных формах течения в ядре потока и на периферии. Поэтому к методам и средствам диагностики неоднородных сред наряду с малой погрешностью измерений, простотой и доступностью применения предъявляют и специальные требования. Это прежде всего нежелательность воздействий, вносящих возмущение в структуру потока и инициирующих фазовые превращения.  [c.239]

Приведенный выше анализ погрешностей измерений ТФХ полностью пригоден и для нового метода, лишь некоторые источники здесь исключаются или уменьшаются, например за счет снижения динамических погрешностей первичных и вторичных преобразователей. Минимизацию погрешностей за счет подбора оптимальных режимных параметров здесь можно провести расчетным путем. Поскольку в расчетные формулы метода входит величина ( 1 — д ), необходимо избежать случая, чтобы она была малой разностью двух больших величин. Погрешность в определении и д не превышает в ТФХ-приборах 1 %. Полагая допустимой для — 2) эту величину втрое большей, получим 3 (д — 2) Я + Я2) /2 или первое условие оптимальности тепловой нагрузки  [c.129]


В последнее время созданы испытательные установки для определения динамической твердости при высоких температурах (методом упругой отдачи Шора) [107, 108, 127, 128, 221 ] и проведен ряд исследований [73, 88, 222]. Достигнутые максимальные температуры составляют 2070 К [222] и 2850 К [128]. Подробно рассмотрены погрешности измерений [128, 214, 215].  [c.23]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]

Использование в пневматических измерительных системах элементов промышленной автоматики значительно расширяет возможности пневматического метода. Однако вследствие значительных динамических погрешностей измерения указанная система не может быть применена для высокопроизводительного контроля (особенно при амплитудных измерениях).  [c.315]

Анализ силовой схемы машины позволяет выявить динамические погрешности измерения изгибающего момента, действующего в корневой части испытуемой лопатки в зависимости от частоты нагружения лопатки. Эти погрешности можно охарактеризовать как погрешности А/ от изменения общего момента инерции динамометра в результате изгиба лопатки и как погрешности Дф от угла поворота динамометра.  [c.187]

Динамическая погрешность измерения изгибающего момента в корне испытуемой лопатки оценена сравнением показаний силоизмерителя установки с фактическим изгибающим моментом при нагружении ступенями через 50 Н-м трех серий образцов в виде плоских консольных пластин с резонансными частотами 275, 515 и 1050 Гц. На рис. 46 представлены динамические погрешности, определенные аналитически и экспериментально (кружки), силоизмерителя установки на указанных частотах.  [c.187]

Измеряют параметры удара при помощи аналоговой или цифровой измерительной техники. Аналоговая аппаратура позволяет, как правило, измерять максимальное ударное ускорение и длительность ударного импульса. Получение остальной информации связано с дополнительной расшифровкой зарегистрированного ударного процесса, что существенно снижает оперативность информации и ведет к относительно большим погрешностям измерения. Использование цифровой техники обеспечивает широкий динамический диапазон измерения, большую достоверность и документальность информации, а также позволяет осуществлять оперативную связь с ЦВМ для последующего анализа измеряемых ударных процессов.  [c.356]

Погрешность при измерении статических нагрузок, % 1 Погрешность при измерении динамических нагрузок. %. ................. 3  [c.141]

Выбор значения частоты источника питания определяется в основном необходимостью получения достаточной чувствительности и уменьшением динамических погрешностей измерений.  [c.108]

Динамические свойства измерительного прибора таковы, что его выходное звено, несуш,ее управляющие контакты, отстает (запаздывает) от изменения входной величины — измерительного зазора S. Следствием этого запаздывания является динамическая погрешность измерения Дх .  [c.119]

Динамическую погрешность измерения As , выраженную в еди ницах измерения зазора, найдем, отнеся выражение (16) к номинальной чувствительности на участке от до s, где Sp — зазор, соответствующий давлению h , а s — текущее значение зазора.  [c.123]


Полученные формулы (15)—(18) показывают, что при изменении измерительного зазора па нелинейных отрезках характеристики Л (s) текущее значение выходного сигнала (измерительного давления) и динамической погрешности измерения являются нелинейными  [c.123]

До начала изменения зазора при = О, т. е. при s = Зц(Т = Гц), сомножители, стоящие в квадратных скобках формул (15), (16), (18), обращаются в нуль и h = h, = 0. После истечения достаточного промежутка времени с начала изменения зазора, т. е. при достаточно большой разности (s — %), сомножители в квадратных скобках стремятся к единице (рис. 1), а зависимость величин давления времени запаздывания Т, и погрешности As от начального зазора Sh (от начального значения Т ) ослабляется. Условно примем, что эти сомножители, обозначенные на рис. 1 соответственно Fi и F , характеризуют апериодический переходный процесс, в течение которого динамические величины давления, времени запаздывания и погрешности измерения наиболее существенно зависят от начального зазора.  [c.124]

Подставляя полученное соотношение (31) в формулу (18), после некоторых преобразований с использованием зависимостей (6), (9), (29), (30) получаем выражение для динамической погрешности измерения  [c.130]

Формулы (36) — (38) и рис. 8 свидетельствуют о том, что после завершения переходного процесса величина времени запаздывания пневматических измерительных приборов отличается от постоянной времени тем больше, чем больше T /s и v. Величины Т зап И Т близки лишь при малых значениях T js и v. С ростом T /s и V отношение 2 зап/ уменьшается. Отсюда, конечно, не следует, что с ростом скорости v погрешность измерения A.9j, сокращается. Время запаздывания уменьшается значительно медленнее, чем растет скорость (см. рис. 8, а), поэтому динамическая погрешность увеличивается.  [c.137]

Зависимость погрешности измерения, вызванной нестабильностью входного давления воздуха, от параметров измерительной ветви пневматических приборов исследовалась в ряде работ [1—4]. Рекомендации по выбору параметров ветви противодавления имеются лишь в отношении быстродействия пневматических приборов [5] Известно, что одним из наиболее эффективных способов повышения быстродействия является применение чувствительного элемента с пониженной жесткостью [5, 6] Увеличенная чувствительность механического преобразователя позволяет уменьшить пневматическое передаточное отношение, а следовательно, увеличить быстродействие прибора и уменьшить динамическую погрешность измерения. В этом случае основной составляющей погрешности измерения может стать ошибка от нестабильности входного давления воздуха.  [c.154]

При сравнении результатов измерения модулей упругости, полученных статическим и динамическим методами, разница в определении составила 1,68%, а в определении G—0,4%. Указанные цифры не выходят за пределы погрешностей статического метода измерения модулей упругости. Следовательно, можно на основании сравнительных испытаний заключить, что погрешности измерения модулей нормальной и касательной упругости разработанным методом не превышают погрешностей статических методов измерений.  [c.454]

Решение дифференциального уравнения при изменении измерительного зазора с постоянной скоростью v в установившемся режиме дает выражение для динамической погрешности измерения (скоростную характеристику)  [c.193]

При выполнении автоматических высокопроизводительных измерений их погрешности АХ (t), описываемые формулой (10), естественно, зависят одновременно от всех упомянутых выше факторов, которые проявляются совместно. В качестве простейшей иллюстрации этого на рис. 2, в показана поверхность У (X, t), характеризующая изменение во времени свойств характеристики У (Z) при экспоненциальном переходном процессе У (t). Поверхность построена на основании известных фронтальных и профильных проекций У (X) и У (<), представленных на рис. 2, а и б. Эту поверхность пересекают фронтальные плоскости Q я К, соответствующие моментам времени и t , когда проводилась динамическая и статическая градуировка прибора. Линии, образованные пересечением этих плоскостей с поверхностью, определяют кривые У (X) для отмеченных значений времени. В результате оказывается возможным получить картину взаимного расположения этих кривых и прямых ММ идеальных характеристик преобразователя, а также оценить погрешности измерений (рис. 2, г, д).  [c.102]

Во многих практически важных случаях нрн исследовании динамики ИУ полная система дифференциальных уравнений преобразователя допускает линеаризацию. Очевидно, что это исключает из рассмотрения статические погрешности измерений, но зато позволяет исследовать в чистом виде динамические погрешности.  [c.104]

Измерение рабочих характеристик и сообщения о них 700 Измерения и проверки при контроле качества 710 Измерение характеристик качества 711 Физические свойства 712 Динамические свойства 713 Структурные свойства 714 Химические свойства 716 Старение и ухудшение качества 717 Погрешности измерения 720 Управление процессами 730 Обработка данных 731 Сбор данных 732 Преобразование данных 733 Интерпретация данных 734 Хранение данных 735 Поиск данных 740 Автоматизация 750 Измерения 751 Визуальные 752 Вкус 753 Обоняние 754 Осязание 755 Звуковые 760 Инспекция 761 Входной контроль 762 Инспекция во время процесса 763 Инспекция на этапе сборки  [c.86]

При линейных измерениях наибольшие погрешности вызываются динамическими изменениями температуры во времени, что ведет к изгибу и кручению элементов прибора. Угловое расположение поверхности при изотропных материалах не зависит от перехода в новое однородное температурное состояние, но при изменениях температуры происходят искажения углов вследствие тепловой инерции деформируемых тел. Тепловое расширение a жидкостей примерно в 15 раз больше, чем у стали.  [c.197]


Метод импульсно-динамического разогрева является дальнейшим развитием метода, рассмотренного в предыдущем параграфе. Используется он в основном для изучения металлов, но в принципе пригоден также и для неметаллических материалов с А- > 1 вт/ м-град). Метод может применяться до температур порядка 3000° С, при этом достигнутая погрешность измерений в диапазоне от 50 до 1000° С составляет около 3%, а при более высоких температурах от 5 до 15%.  [c.49]

Статические измерения констант упругости покрытий имеют по крайней мере два недостатка. Отмечаются большие трудности изготовления брусков-образцов при отделении покрытия от основного металла и особенно при шлифовании. Кроме того, проведение испытаний статическими методами весьма затруднительно из-за высокой хрупкости материала. Незначительная упругая деформация обычно завершается разрушением без следов пластической деформации. Использование высокочувствительных тензорезисторов и тензостан-ций с большим коэффициентом усиления сопровождается увеличением погрешности измерений. Динамические методики определения констант упругости покрытий, разработанные более детально, приводят к меньшим погрешностям и применяются чаще.  [c.53]

Измерение динамических напряжений проводится с помощью термостойких тензорезисторов на металлической подложке с базой решетки 10 J лl и сопротивлением порядка 150 ом. Максимальная рабочая температура тензорезисторов составляет 430° С, коэффициент чувствительности при температуре 250° С равен 1,8. В каждой исследуемой точке устанавливаются два тензорезистора в известных направлениях главных деформаций. Для герметизации датчики закрывают колпаками, которые обвариваются по контуру. Соединительные провода от датчиков выводятся в заш,итных трубках диаметром 6 мм толщиной стенки 1 мм, которые по всей трэссе внутри аппарата крепятся к поверхности элемента скобами, приваренными с шагом 150—200 мм. Для измерения динамических напряжений применяется мостовая схема с выносной компенсацией по активной и емкостной составляющим. Такая схема позволяет значительно сократить время балансировки мостов при переключении датчиков. Перед каждым измерением проводится статическая тарировка каналов путем последовательного подключения в плечо моста постоянного сопротивления величиной 0,01 ом с регистрацией отклонения светового луча на экране осциллографа. В качестве вторичных приборов используются тензометрические усилители и светолучевые осциллографы. Суммарная погрешность измерений динамических напряжений составляет 12% от предела измерений. Одновременно можно записать сигналы по двадцати каналам, что обеспечивает регистрацию необходимого для анализа количества тензорезисторов и датчиков пульсаций давления,  [c.156]

Влияние на точность анализа первых двух факторов может быть достаточно малым только при проектировании низкочастотных схем в дискретном исполнении. С ростом быстродействия схем существенно увеличиваются погрешности измерения динамических выходных параметров, увеличиваются коэффициенты влияния паразитных емкостей и индуктивностей, существенно сказываются эффекты длинных линий. Причем в случае ИС не удается в экспериментальном макете достичь сколько-нибудь удовлетворительной имитации реальных паразитных параметров и параметров линий связи. Третий фактор приводит к искажению результатов многовариантного анализа. В самом деле, здесь необходимы межвариантные изменения избрашгых параметров компонентов на определенные величины. Но изменение параметров, например, транзистора производится путем смены транзистора в. макете. Подобрать же экземпляры транзисторов  [c.28]

При измерении параметров, быстро изменяющихся во времени, позннкаег динамическая составляющая погрешности измерения — динамическая погрешность. Динамическая погрешность вызвана инерщюнностью средств измерений и связана с динамическими характеристиками передаточной функции, импульсной характеристикой и др. (ГОСТ 8.256—77 и РД 50—404—83). Являясь в общем случае случайным процессом, она определяется разностью ял(()=хвх0)—х (t), где Хвх(0 фактическое значение измеряемого параметра на в.ходе средства измерений, д (/)—результат измерения этого параметра. Величина зависит от динамичес-  [c.51]

При выборе датчика особое внимание следует уделять его по-Р°гу чувствительности, который не должен превышать погреш-Измерения. Инерционность датчика также должна быть ми- Мальной. После выбора датчика осуществляется выбор регист-РУЮщей аппаратуры, характеристика которой, как правило, ведена в паспортных данных. Для ориентировочных оценок пользоваться данными табл. 5,6. показано выше, инерционность измерительной систе-Ход измеряемого процесса из-за конечного времени пере-процесса превращения (преобразования) различных ви-бод Ргии (механической, топливной, электрической и др.) при- динамическим погрешностям измерений. Динамические  [c.195]

Исследование систем типа А1, А4 и Б1 (рис. 1, а, г, д) с узлом компенсации динамических погрешностей проводилось для изучения влияния параметров Pg и на степень компенсации погрешностей. Принято, что эти системы настраиваются в статическом режиме. Поэтому степень компенсации погрешности измерения тем больше, чем меньше разница статического Pj (0) и динамического Psit) давлений в точках настройки системы управления по установочным калибрам.  [c.104]

Комбинируя перечисленные параметры, можно добиться хорошей идентификации статической характеристики Р (0) с динамической Рз (t) на значительном их протяжении и, следовательно, хорошей стенени коррекции динамических погрешностей измерений (рис. 5).  [c.105]

В настоящее время пневматические системы управления шлифовальными автоматами пока работают при скоростях изменения размера на порядок меньше изученных. Сокращение скорости в 10 и 100 раз показало, что узел коррекции системы А1 становится неработоспособным при малых 24, больших F4 и равенстве давлений питания Pg = Pi при средних и особенно малых зазорах 29 (рис, 6). Это объясняется тем, что при малых скоростях изменения размера измерительное давление Р2 мало отличается от статического, а корректирующее Р — от атмосферного. В этом случае повторитель давления должен отрабатывать избыточную величину давления Р3, близкую к удвоенному значению избыточного значения Р , что, очевидно, невозможно достигнуть при малых S29 ввиду принятого равенства давлений питания Pg = Р . Следовательно, при малых У291 составляющих десятки микрометров в секунду, для удовлетворительной коррекции динамической погрешности измерения необходимо иметь соизмеримость быстродействия (постоянных времени) узла коррекции системы и его измерительной цепи. При работе на очень малых Sjg, измеряемых десятками микрометров, целесообразно иметь превышение давления Pg над Pj.  [c.105]

Приведены нелинейные математические модели ряда пневматических измерительных систем управления, имеющих узел компенсации динамических погрешностей измерений. Узел компенсации построен на пятимембранном реле УСЭППА с усилителем сопло — заслонка или два сопла — заслонка . На основании результатов моделирования сделаны заключения об особенностях систем при линейном законе измеряемого размера.  [c.182]

На рис. 12, а показана схема знакопостоянной гидропульсационной установки. В ее динамической модели (рис. 12, б) присутствуют массы жидкости в трубопроводе Ши, подвижных частей машины Шо, приведенная масса деталей рамы Шс, упругие жесткости подушки масла в цилиндре пульсатора Сц, подушки масла в цилиндре машины с , образца Сц и станины с -Объемная распределенная податливость жидкости в трубопроводах может быть учтена ее приведением к цилиндрам пульсатора и машины, поскольку длина трубопровода в выполненных конструкциях пульсаторов обычно на порядок ниже длины волны в трубопроводе прн рабочих частотах, С повышением частоты возбуждения в гидропульсационных установках на погрешность измерения оказывают влияние волновые явления в трубопроводах. В этом случае трубопровод пульсатора необходимо рассматривать как систему с распределенными параметрами. В большинстве конструкций гидропульсационных установок давление на силоизмерение отбирают из гидроцилнндра машины, поэтому не  [c.345]


Анализ кривых показывает, что с ростом скорости и, с сокращением величины измеряемого зазора s (скорости слежения за размером) увеличивается погрешность перемещения, равная разности ординат у (0) иг/ (v). В качестве статической характеристики перемещения у (0) приближенно может быть взята кривая для V = 50 MKMj eK. Динамическая погрешность измерения размера As (i>) равна разности абсцисс сравниваемых кривых s (0) —  [c.102]

Исследования [1, 8, 9] показали, что при равномерном изменении зазора S в пределах линейного участка характеристики давления h (s), т. е. при постоянной чувствительности г, = dhlds, величина времени запаздывания после завершения переходного процесса прибора не зависит от скорости v изменения зазора и равна постоянной времени Т, характеризуюш,ей процесс в измерительной камере. В этом случае динамическая погрешность измерения определяется произведением величин Т — и v  [c.119]

Наряду с погрешностью измерения и времени запаздывания Гзап важной метрологической характеристикой пневматических измерительных приборов является динамическая чувствительность isB- От величины зависят, например, погрешности измерения, вызванные нестабильностью входного давления воздуха, ошибкой срабатывания электроконтактов прибора и т. п.  [c.138]

Зависимости, полученные в результате проведепиого исследования, уточняют динамические характеристики и метрологические возможности иневыетических приборов автоматического контроля размеров. Так, выше было установлено сокращение величины времени запаздывания и динамической погрешности измерения относительно их значений, вычисленных по суш еству10ш,им формулам [см. формулу (1)], которые применяются для расчета динамических характеристик пневматических измерительных приборов.  [c.140]


Смотреть страницы где упоминается термин Погрешность измерения динамическая : [c.24]    [c.211]    [c.42]    [c.61]    [c.269]    [c.123]    [c.102]    [c.157]    [c.151]   
Температурные измерения (1984) -- [ c.54 ]



ПОИСК



164, 165 — Погрешности измерени

346—348 — Погрешности измерения плунжерные 230—232 — Конструктивные схемы 231 — Схема возбуждения и динамическая модель 179 —Характеристика

Динамические измерения и динамические погрешности

Динамические измерения и динамические погрешности

Динамические измерения и погрешности детерминированных линейных измерительных цепей

Динамические погрешности и анормальные результаты измерений. gi Влияние параметров измерений на погреш есть их результатов

Измерение динамическое

Нормирование динамических погрешностей средств измерений

Погрешность динамическая

Погрешность измерения

Погрешность измерения абсолютна динамическая

Погрешность средства измерений динамическая



© 2025 Mash-xxl.info Реклама на сайте