Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Погрешность дополнительная

Датчики для измерения давления. Непосредственная передача давления от места измерения по трубопроводу на неподвижные приборы связана с необходимостью иметь в измерительной системе передатчик давления с подвижным уплотнением, которое ограничивает измеряемое давление и срок службы измерительной системы, а также является источником возможных погрешностей. Дополнительные погрешности возникают из-за засорения коммутирующих каналов. Поэтому для измерения давления на вращающихся объектах кроме непосредственного измерения давления получили распространение датчики, в которых давление преобразуется в электрическую величину. Съем информации о давлении в форме электрических сигналов позволяет построить малоинерционные системы измерения, которые необходимы для изучения быстро изменяющихся во времени процессов.  [c.315]


К седьмой группе, учитывающей погрешности дополнительного механизма для сверл и резьбовых инструментов относятся следующие непараллельность оси шпинделя дополнительного механизма и оси передней бабки смещения оси шпинделя дополнительного механизма (от оси передней бабки) в вертикальной и горизонтальной плоскостях погрешности приспособлений (патрона, цанги) и вспомогательного инструмента, устанавливаемых на дополнительном механизме.  [c.171]

Для выявления случайной составляющей суммарной погрешности дополнительно, как правило, определяется стабильность показаний прибора.  [c.133]

Примечание. Понятие применимо к основной погрешности, дополнительной погрешности и к изменению показаний.  [c.481]

Далее можно было бы, используя уравнение равновесия (6), решать задачу по отысканию распределения напряжений в торообразной части заготовки на скругленной кромке матрицы. Однако такое решение вызывает большие сложности [37]. Так как при вытяжке в конической матрице торообразная часть очага деформации составляет обычно малую долю всего очага деформации, то без большой погрешности дополнительное влияние трения, изгиба и спрямления при перемещении элементов по скругленной кромке матрицы можно учесть аналогично тому, как это было сделано при анализе первого перехода вытяжки. Необходимость дополнительного учета сил трения в торообразном участке вызывается тем, что протяженность зоны контакта в нем (в меридиональном направлении) больше, чем протяженность части конической поверхности с тем же изменением радиуса р (от границы торообразного участка с коническим до точки сопряжения торообразного участка с цилиндрической стенкой образующегося стакана).  [c.156]

Погрешность доверительная Погрешность дополнительная Погрешность допускаемая Погрешность единичного измерения (в ряду равноточных измерений) средняя квадратическая Погрешность единичного измерения из ряда однородных двойных измерений средняя квадратическая Погрешность единичного измерения средняя арифметическая (в ряду измерений) Погрешность единичного неравноточного измерения средняя квадратическая Погрешность запаздывания Погрешность из-за запаздывания реакции средства измерений  [c.103]


Погрешности измерения возникают также из-за неправильной установки средства измерения, влияния на него магнитных или электрических полей, наличия дополнительных и динамических погрешностей. Дополнительные погрешности обусловлены отклонением условий, в которых работает прибор, от нормальных. Динамические погрешности возникают из-за инерционности применяемых технических средств при достаточно быстрых Изменениях измеряемой величины.  [c.907]

Произведем для сопоставления упрощенный расчет погрешностей комплекта индивидуального контроля и карала СЦК. Первый включает в себя первичный измерительный прибор с предельной погрешностью 1 % и вторичный прибор с погрешностью 0,5%. Без учета погрешностей, вносимых проводными линиями связи, предельная погрешность комплекта, рассчитанная по формуле (2.20), составляет 1,2%. Измерительный канал СЦК включает, кроме первичного прибора, нормирующий преобразователь с погрешностью 0,5 %, коммутатор с погрешностью 0,1 % и АЦП с погрешностью 0,51%. Результирующая погрешность измерительного канала систем контроля составляет 1,23%. Небольшое различие результирующих погрешностей каналов индивидуального контроля и СЦК определяется доминирующей погрешностью первичного прибора. При ее снижении до 0,5 % влияние погрешностей дополнительных элементов возрастает в первом случае эта погрешность составляет 0,71 %, а во втором 0,87%. Введение в измерительный канал дополнительных элементов в большей мере влияет на его надежность. В связи с этим становится очевидной важность использования первичных преобразователей с унифицированным выходным сигналом.  [c.215]

На выходные концы валов со стороны соединительной муфты, ременной или цепной передачи действует консольная радиальная нагрузка Р,., вызывающая появление дополнительных реакций в опорах. Со стороны муфты на вал действует радиальная нагрузка Ск, возникающая из-за погрешностей монтажа, ошибок изготовления и неравномерного изнашивания элементов муфты. Эти реакции в соответствии со схемой (рис. 7.3) определяют по соотношениям  [c.80]

При необходимости точной обработки в качестве установочных баз следует по возможности выбирать основные базы, а не вспомогательные, так как при этом обработка может быть произведена с минимальной погрешностью. При обработке от вспомогательных баз всегда возникают дополнительные погрешности.  [c.40]

При оценке погрешностей фотоэлектрической пирометрии было найдено, что имеются источники погрешностей, связанные со способа.ми взаимодействия оптической системы и источника. Погрешности этой категории исследовать довольно трудно, так как они часто являются результатом сложных комбинаций различных эффектов. Один из наиболее важных эффектов такого рода связан с размером наблюдаемого источника и распределением яркости за пределами геометрически наблюдаемой площади. Для объекта конечного размера, находящегося в плоскости источника, поток излучения, прошедший плоскость диафрагмы, из-за дифракции меньше потока, который должен иметь место в соответствии с геометрической оптикой. Чтобы эти потери свести к нулю, нужно было бы увеличить размер источника так, чтобы в отверстии диафрагмы он стягивал угол 2л стерадиан. Таким образом, если пирометр измеряет по очереди два источника с разными размерами, сравнение будет содержать погрешность, обусловленную дифракцией. Дополнительная погрешность возникает в результате рассеяния на линзах объектива или на зеркале. Она также будет зависеть от размера источника, так как рассеяние пропорционально освещенности элементов объектива.  [c.379]

Усилия, возникающие в зацеплении колес, вызывают деформацию не только зубьев, но и валов, корпусов н опор, что приводит к неравномерному распределению нагрузки вдоль контактной линии зубьев, а также к дополнительным динамическим нагрузкам. Такое же влияние оказывают неизбежные погрешности изготовления и монтажа деталей передачи.  [c.290]


Корректирующая линейка с криволинейным профилем компенсирует погрешности шага ходового винта путем дополнительного поворота маточной гайки.  [c.357]

При конструировании необходимо учитывать требования технологичности и предусматривать возможность выбора для проверки точностных параметров деталей, сборочных единиц и изделия такой схемы измерения, которая не вносила бы дополнительных погрешностей и позволяла применять простые и надежные универсальные или существующие специальные измерительные средства.  [c.21]

Погрешности профиля вызывают неравномерность движения колес, дополнительные динамические нагрузки, а также уменьшают поверхность контакта зубьев. Предельная погрешность профиля регламентируется допуском ff, а не предельными отклонениями, поскольку при контроле эвольвенты положение точки на идеальном профиле (номинальное положение), от которого следует отсчитывать отклонения, неизвестно, а положение всего профиля определяется допускаемыми отклонениями шага зацепления.  [c.312]

Плавность работы зубчатых колес можно выявлять при контроле местной кинематической погрешности, циклической погрешности колеса и передачи и зубцовой частоты передачи на приборах для измерения кинематической точности, в частности путем определения ее гармонических составляющих на автоматических анализаторах. С помош,ью поэлементных методов контролируют шаг зацепления, погрешность профиля и отклонения шага. Шаг зацепления контролируют с помощью накладных шагомеров (схема VII табл. 13.1), снабженных тангенциальными наконечниками 2 и 3 и дополнительным (поддерживающим) наконечником 1. Измерительный наконечник 3 подвешен иа плоских пружинах 4 6. При контроле зубчатого венца перемещение измерительного наконечника фиксируется встроенным отсчетным устройством 5, При настройке положение наконечников 1 1 2 можно менять G помощью винтов 7.  [c.332]

Во всех случаях при определении функций проектировщика в САПР надо по возможности ориентироваться на широкий круг специалистов, обладающих минимальными познаниями в области программирования и вычислительной техники. Это позволит, с одной стороны, исключить дополнительные источники погрешностей, а с другой — ускорит массовое внедрение САПР.  [c.140]

Разделение рассмотренного ПП между конструкторским и технологическим подразделениями несет существенные недостатки. При выборе технологических параметров на стадии конструирования технологические процессы не могут быть учтены с необходимой точностью. Несмотря на это, стадия конструирования завершается выпуском конструкторской документации (см. рис. 6.1, а). Уточнение технологических процессов на следующей стадии проектирования (см. рис. 6.1, б), как правило, требует корректировки конструкторских решений. Это, в свою очередь, требует внесения соответствующих изменений в конструкторскую документацию, что заметно влияет на увеличение объемов и сроков ПП и является источником дополнительных погрешностей.  [c.163]

Погрешности коллимации включают в себя погрешности юстировки, по-греншости, вызванные конечной толщиной и шириной пучка, погрешности непараллельности геометрии пучка и плоскости сканирования, расходимости или сходимости пучка, погрешности, вызванные рассеянным излучением, так называемые коллимационные шумы, вызванные механическими и тепловыми нагрузками на элементы рентгенооптики в процессе сканирования и недостаточной жесткостью связи между узлами излучателя, коллиматоров и детекторов, погрешности дополнительных элементов рентгенооп-тнки (выравнивающих клиньев, регулировочных образцов, управляемых диафрагм и т. п.).  [c.450]

Примечание. Основная погрешность, дополнительная погрешность и вариации считаются в процентах от верхнего предела измерения.  [c.27]

Конечно, при каких-либо конкретных МВИ, кроме перечисленных десяти источников составляющих результирующей погрешности МВИ, могут существовать и другие источники. Поэтому разрабатываемые МВИ нужно специально изучать с целью определения всех источников существенных частных погрешностей. Дополнительно выявленные частные погрешности должны учитываться точно так же, как перечисленные десять составляюпшх результируюн1ей погрешности МВИ. С другой стороны, в конкретных МВИ не обязательно действуют все десять указанных источников погрешностп.  [c.183]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-види-мому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому молю гетерогенной системы в силу конечности его размеров и дискретности его 1компонентов неприменимы точные математические методы. Мож но полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее  [c.33]

Здесь наблюдается качёствелно тот же характер расхождения данных, что и ранее. Дополнительно отметим, что опытные значения Рл/Рр в [Л. 57] непосредственно не приведены и поэтому они оценивались для табл. 3-2 по имеющей собственную погрешность аппроксимацион-ной зависимости (3-17).  [c.89]


Погрешность фс)рл ы обработанных поверхностей возрастает из-за непостояпсгиа температурного поля по объему заготош и в процессе обработки (рис. 6.15, а), и после охлаждения обработанной заготовки возникают дополнительные погрешности обработанной поверхности (рис. 6,15, б). Температурные погрешности следует учитывать при иалад.че станков. Для определения погрешностей необходимо знать температуру инструмента и заготовки или количество теплоты, переходящей в них (см. рис. 6.14).  [c.270]

В процессе нарезания зубчатых колес на поверхностях зубьев возникают погрешности профиля, появляется неточность шага зубьев и др. Для уменьшения или ликвидации погрешностей зубья дополнительно обрабатывают. Отделочную обработку для зубьев иезакалепных колес называют шевингованием. Предварительно нарезанное прямозубое или косозубое колесо 2 плотно зацепляется с инструментом 1 (рис. 6.112, а). Скрещивание их осей обязательно. При таком характере зацепления в точке А можно разложить скорость на составляющие. Составляющая v направлена вдоль зубьев и является скоростью резания, возникающей в результате скольжения профилей. Обработка состоит в срезании (соскабливании) с поверхности зубьев очень тонких волосообразных стружек, благодаря чему погрешности исправляются, зубчатые колеса становятся более точными, значительно сокращается шум при пх работе. Отделку проводят специальным металлическим инструментом — шевером (рис. 6.112,6). Угол скрещивания осей чаще всего составляет 10—15°. При шевинговании инструмент и заготовка воспроизводят зацепление винтовой пары. Кроме этого, зубчатое колесо перемещается возвратно-поступательно (s,,,,) и после каждого двойного хода подается в радиальном направлении (S(). Направления вращения шевера (Ущ) и, следовательно, заготовки (Узаг) периодически изменяются. Шевер режет боковыми сторонами зубьев, которые имеют специальные канавки (рис. 6.112, в) и, следовательно, представляют собой режущее зубчатое колесо.  [c.382]

Многошпиндельные автоматы более производительны, чем одно-шпипдельные, но точность обработки на них меньше, чем на одношпиндельных. Зазоры в поворотном барабане, в котором размещаются шпиндели, а также в делительном механизме создают дополнительные погрешности при обработке. Одношпиндельные автоматы обеспечивают точность обработки на концентричность до 0,02 а для деталей малых диаметров — даже до 0,01 мм, в то время как на многошпиндельных автоматах достигается точность до 0,04 — 0,05 мм.  [c.364]

Конструктивные особенности станков с ЧПУ, специфика проектирования процессов и управляющих программ для них вносят по сравнению с оборудованием с ручным упра1злением дополнительные погрешности. При обработке на станках с ЧПУ погрешности, связанные с упругими отжатиями ТС, несколько меньше (не более 10 % в общем балансе), а погрешности настройки приспособления и инструмента — существенно больше (до 60 %), чем на станках с ручным управлением.  [c.225]

Точность в значительной мере определяет рабоюспособность зуб чатых и червячных передач, так как их погрешности вызывают дополнительные динамические нагрузки, неравномерпосгь вращения, вибрации, шум, концентрацию нагрузок по длине контактных линий и другие дефекты.  [c.194]

Погрешности формы и взаимного расположения зубьев (окружного шага) являются причиной неплавности работы зубчатой пары, колебаний угловой скорости колес. Последние вызывают в зацеплении дополнительные инерционные усилия, которые и называют динамической нагрузкой. Эта нагрузка является вредным фактором, снижающим долговечность передачи и вызывающим шум и вибрацию деталей передачи.  [c.291]

Погреишость средства измерения, возникающая при использовании его в нормальных условиях, когда влияющие величины находятся в пределах нормальной области значений, называют основной. Если значение влияющей величины выходит за пределы нормальной области значений, появляется дополнительная погрешность.  [c.115]

Обобщепкой характеристикой средства измерении, определяемой пределами основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерения, является класс точности средства измерений (ГОСТ 8.401—80). Класс точности характеризует свойства средства намерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.  [c.115]

Перед выбором точности средства измерения или контроля следует решить вопросы выбора организационно-технических форм, целесообразности контроля определенного вида параметров и производительности таких средств (универсальных или специальных, автоматизированных или автоматических). Как правило, одну метрологическую задачу можно решить с помощью различных измерительных средств, которые имеют не только разную стоимость, но и разные точность и другие метрологические показатели, а следовательно, дают неодинаковые результаты измерений. Это объясняется отличием точности результатов наблюдения от точности измерения самих измерительных средств, различием методов использования измерительных средств и дополнительных приспособлений, применяемых в сочетании с универсальными или сиециализированными средствами (стойками, штативами, рычажными и безрычажными передачами, элементами крепления и базирования, измерительными наконечниками и др.). В связи с этим вопрос выбора точности средств измерения или контроля приобретает первостепенное значение. Так, предельные погрешности измерения наружных линейных размеров контактными средствами в диапазоне 80—120 мм составляют для штангенцнркулей 100—200 мкм, для индикаторов часового тииа  [c.136]

Рассмотрим несколько характерных примеров использования положений принципа инверсии. После изготовления ступенчатого вала Д редуктора (см. рис. 11.4) необходимо выбрать схему контроля радиального биения поверхности А с помощью показывающего измерительного прибора И (рис. 6.3, а). В качестве метрологических баз следует выбрать поверхности В и В, поскольку по ним происходит контакт вала с опорными подшипниками, а использование в качестве метрологических баз линии центров С—С или поверхностей D—D приводит к возникновению дополнительных погрешностей, вызванных несоосностью этих элементов относительно базовых поверхностей В—В. В осевом направлении в качестве базирующего элемер1та следует выбрать поверхность (а не С или С), поскольку она определяет осевое положение вала (от этой поверхности целесообразно проставлять линейные размеры L). При вращательном движении вала в процессе измерения его траектория соответств ет траектории движения при эксплуатации. При базировании на призмах  [c.140]

Средний диаметр наружной резьбы контрол1фуют с помощью универсальны.х средств без дополнительных приспособлений или с пспользованнем резьбовых вставок, ножей, проволочек, роликов, а для внутренней резьбы — еще и шариков или оттисков. При измерении среднего диаметра наружной резьбы с помощью микроскопа перекрестпе визирной трубки вначале наводят на верхний профиль резьбы, а затем на нижний (рис. 12.13, а). За результат измерения принимают полусумму результатов измерений среднего диаметра по правой и по левой сторонам профиля. При этом в значительной мере уменьшается влияние погрешности шага. Однако теневое изображение профиля резьбы в этом случае из-за влияния угла подъема резьбы является искаженным, поэтому для контроля среднего диаметра часто используют приспособления с ножами, проволочками или вставками (рис. 12.14). При использовании ножей (рис. 12.14, а) их лезвия подводят с помощью специальных приспособлений и кареток к боковым сторонам выступов до плотного соприкосновения (без просветов). Так как кромка лезвия ножа из-за подъема витка резьбы не видна, отсчет положения ножа проводят по рискам, на-  [c.297]


Для расчета второй части ошибки, как правило, требуется проведение дополнительных исследований с целью определения оптимальных условий проведения эксперимента. Так, подавляющее большинство методов основано на решении одномерной задачи, в то время как на практике, естественно, используются образцы конечных размеров. В этом случае необходим ппедварительный анализ соответствующих двумерных задач, в результате которого можно найти такие соотношения между линейными размерами образца, при которых условия одномерности теплового потока удовлетворялись бы с требуемой точностью. Необходимо принять и ряд других мер для получения достоверных данных. В частности, при подготовке образцов для теплофизического эксперимента необходима тщательная обработка поверхностей для соблюдения граничных условий четвертого рода, так как термические сопротивления являются серьезным источником погрешности. К сожалению, не существует каких-либо общих критериев, позволяющих определить  [c.128]

Сравнение расчетных отклонений с экспериментальными, взятыми в виде отношения За к среднему значению, показывает, что расчетные результаты несколько занижены по сравнению с действительными. Это объясняется тем, что при расчете не учтен ряд технологических факторов (отжиг железа магнитопровода, режимы механической обработки и др.), а также погрешности расчета и измерений. Дополнительные расчеты и экспериментальные исследования показывают, что погрешность использованных методик расчета не превышает 14%, а средств измерения — 5%, что укладывается в рамки технологического разброса и является вполне удовлетворительным в микроэлектромашиностроении. Кроме того, расхождения расчетного и экспериментального разброса являются в большинстве случаев систематическими и их можно учесть путем введения постоянных составляющих.  [c.235]


Смотреть страницы где упоминается термин Погрешность дополнительная : [c.451]    [c.137]    [c.114]    [c.190]    [c.182]    [c.97]    [c.215]    [c.177]    [c.269]    [c.141]    [c.145]    [c.168]   
Взаимозаменяемость, стандартизация и технические измерения (1987) -- [ c.115 ]

Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.326 ]

Основные термины в области метрологии (1989) -- [ c.0 ]

Теплотехнические измерения и приборы (1984) -- [ c.12 ]

Теплотехнические измерения Изд.5 (1979) -- [ c.35 ]



ПОИСК



Погрешность действующая дополнительная 122, основная

Погрешность измерения дополнительная

Погрешность средства измерений дополнительная



© 2025 Mash-xxl.info Реклама на сайте