Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чувствительные элементы

Регулируемый объект 1 посредством обратной связи воздействует на чувствительный элемент 3, который в свою очередь действует на регулируемый объект 1.  [c.398]

Наиболее совершенная система стабилизации состава смеси выполняется по принципу замкнутого контурного регулирования с датчиком состава ОГ (кислородным датчиком). Кислородный датчик (так называемый Х-зонд) с чувствительным элементом из двуокиси циркония вырабатывает ЭДС при наличии кислорода в отработавших газах при а 0,98... 1,02 (рис. 18).  [c.40]


Чувствительные элементы измерительной схемы должны быть тщательно экранированы от внешних электромагнитных наводок. Не должно существовать внутренней обратной связи от выхода схемы с высоким уровнем сигнала.  [c.116]

Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]

С момента появления первых термометров сопротивления и работы Каллендара по платиновым термометрам термометрия по сопротивлению претерпела существенные изменения. Наряду с классическими платиновыми термометрами сопротивления, применяемыми для измерений с большой точностью и во все возрастающем диапазоне температур, в настоящее время в промышленном масштабе используются проволочные элементы из платины, меди или никеля, а также печатные толстопленочные платиновые элементы. В диапазоне комнатных температур хорошо зарекомендовали себя точные и недорогие термисторы. В научных исследованиях при низких температурах используются термометры сопротивления с чувствительными элементами из сплава родия с железом, германия, углерода и стекло-углерода. Во многих случаях промышленных применений термометры сопротивления как основной инструмент контроля процесса вытесняют термопары. При температурах ниже 700 °С большинство промышленных термометров сопротивления сейчас более компактны и надежны, чем термопары. Кроме того, все более широкое применение микропроцессоров в составе приборов позволяет быстрее и эффективнее, чем было возможно прежде, использовать информацию, содержащуюся в сигнале от термометра.  [c.186]


Рис. 5.14. Конструкции чувствительного элемента в стержневых платиновых термометрах сопротивления. Рис. 5.14. Конструкции чувствительного элемента в стержневых <a href="/info/3953">платиновых термометрах</a> сопротивления.
Рис. 5.15. Зависимость показаний термометра от глубины погружения в ванну е тающим льдом. Термометр М (1) соответствует рис. 5.14, в термометр 0(2) не показан на рис. 5.14, его чувствительный элемент представляет собой спираль, намотанную на слюдяной каркас. Рис. 5.15. Зависимость показаний термометра от <a href="/info/181239">глубины погружения</a> в ванну е тающим льдом. Термометр М (1) соответствует рис. 5.14, в термометр 0(2) не показан на рис. 5.14, его чувствительный элемент представляет собой спираль, намотанную на слюдяной каркас.
В промышленных условиях обычно требуется не столько исключительная воспроизводимость, сколько хорошая долговременная стабильность показаний при неблагоприятных условиях (вибрация, давление, перепады температур, агрессивная среда), а также взаимозаменяемость однотипных термометров. Именно поэтому большое значение имеет конструкция корпуса и крепления чувствительного элемента внутри корпуса. Огромное большинство отказов термометров, работающих в условиях промышленного производства, связано о обрывом выводов. Обрыв происходит в результате механических нагрузок, возникающих вследствие теплового расширения при циклических изменениях температуры.  [c.226]

Наиболее распространенная конструкция технического платинового термометра сопротивления общего назначения показана на рис. 5.24, г. Чувствительный элемент (проволочного или пленочного типа) прочно закреплен в нижней части защитного кожуха из нержавеющей стали или специального сплава с помощью цемента. Изолированные выводы, идущие внутри кожуха к соединительной колодке, могут фиксироваться изоляционной крошкой, цементом или пластиковой заливкой в зависимости от того, на какой уровень вибраций рассчитан термометр и в каком диапазоне температур он будет работать. Для уменьшения инерционности кожух этого термометра нередко имеет суженный конец, подобно другим термометрам, показанным на этом рисунке. Назначение этих термометров рассматривается ниже.  [c.226]

Сам чувствительный элемент должен иметь относительно малую постоянную времени от 1 до 5 с в зависимости от условий полета. Конструкция элемента показана на рис. 5.28. Проволока диаметром 0,05 м из чистой платины намотана спиралью и укреплена между двумя коаксиальными тонкостенными платиновыми трубочками спираль изолирована от стенок слюдой и залита цементом. Полностью датчик температуры торможения показан на рис. 5.29. Прежде чем попасть на чувствительный элемент, воздушный поток круто поворачивает, так что любые увлеченные им твердые частицы пролетают в выходное отверстие. Внутренний пограничный слой отсасывается через отверстия, показанные на рисунке, с тем чтобы не происходило отделения потока при резком изменении его направления.  [c.230]

Важно подчеркнуть, что достижение высокой точности у технических термометров сопротивления требует применения тех же принципов, которые лежат в основе конструирования самых точных эталонных термометров. Дополнительные требования, предъявляемые к техническим термометрам (прочность, невысокая стоимость, иногда также малые размеры), должны удовлетворяться без чрезмерного снижения требований к точности измерений, которая зависит от качества теплового контакта с объектом измерения, отсутствия механических напряжений на чувствительном элементе, защиты от коррозии, возможности периодической поверки термометра.  [c.231]

Термопары очень широко применяются для измерения температуры в самых различных условиях. В этой главе будут рассмотрены лишь наиболее важные аспекты термометрии, использующей термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопару уже нельзя считать единственным и важнейшим прибором промышленного применения. Преимущества термометра сопротивления по сравнению с термопарой вытекают из принципа действия этих устройств. Термометр показывает температуру пространства, где расположен его чувствительный элемент, и результат измерения мало зависит от подводящих проводов и распределения температуры вдоль них. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаями. Разность напряжений идеальной термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле она и является основным фактором, ограничивающим точность измерения температуры термопарами.  [c.265]


Эталонным прибором, используемым в диапазоне температур от 13,81 К до 630,74 °С, является платиновый термометр сопротивления. Его чувствительный элемент должен быть изготовлен из свободной от напряжений отожженной чистой платиновой проволоки. Относительное сопротивление W(Tea) термометра, определяемое как  [c.413]

Упругий гистерезис проявляется в несовпадении характеристик пружины при нагружении и при разгрузке (кривая 2 на рис. 319). Гистерезис зависит от величины напряжений, возникающих в материале при работе пружины. Поэтому для ряда чувствительных элементов величина допускаемых напряжений определяется не пределом прочности или текучести материала, а допустимой величиной гистерезиса.  [c.462]

Манометрические трубчатые пружины являются чувствительными элементами приборов, предназначенных для измерения давлений, вакуума, уровня и расхода жидких и газообразных веществ.  [c.476]

Впервые идея создания гигрометра, использующего для охлаждения чувствительного элемента холодный поток вихревой трубы, родилась в США. Оригинальная конструкция такого гигрометра, определяющего влажность воздуха по методу точки росы, основанного на фиксации начального момента появления конденсата и его замораживание в капилляре, запатентована (Пат. 3152475, США). Более совершенными являются гигрометры, разработанные в КуАИ под руководством профессора А.П. Меркулова. На рис. 6.11 температура точки росы фиксируется по моменту выделения конденсата на зеркальной поверхности чувствительного элемента. Газ, влажность которого требуется измерить, через патрубок I подается в цилиндрическую полость кор-  [c.296]

Рис. 6.11. Схематическая конструкция вихревого гигрометра ВГ и чувствительные элементы гигрометров Рис. 6.11. Схематическая конструкция вихревого гигрометра ВГ и чувствительные элементы гигрометров
Прибор дает пример широко используемой индикаторной системы ставили )ации (стабилизатор непрямого действия), где гироскоп играет роль чувствительного элемента, регистрирующего отклонение объекта от заданного положения и передающего соответствующий сигнал двигателю, который и осуществляет стабилизацию, возвращая объект в исходное положение (например, с помощью рулей).  [c.339]

Пример. Рассмотрим клапан с пружиной, работающей на сжатие (рис, 3.10, а). При длине пружины в с катом состоянии //, = 8,5 м.м эксплуатационный показатель — сила упругости Р должна быть (рис. 3.10, в) постоянной и равной (1 rf 0,1)Н. Пружины, работающие в регуляторах давления и чувствительных элементах, например, измерительных приборов, должны обеспечивать определенную зависимость силы упругости от деформации, папример создавать постоянный наклон упругой характеристики (рис. 3.10, г). Рассматриваемую пружину (статического действия) рассчитывают по максимальной воспринимаемой нагрузке исходя из допускаемого напряжения. Зависимость силы Р, действующей на пружину, от деформации Я имеет вид  [c.77]

В ГОСТ 16263—70 выделены следующие общие для средств измерений структурные элементы преобразовательный и чувствительный элементы, измерительная цепь, измерительный механизм, от-счетное устройство со шкалой и указателем и регистрирующее устройство. Кроме того, контактные измерительные приборы обычно снабжены одним или несколькими наконечниками. Измерительный наконечник — элемент в измерительной цепи, находящийся в контакте с объектом контроля (измерения) в контрольной точке под непосредственным воздействием измеряемой величины. Базовый наконечник — элемент измерительной цепи, расположенный в плоскости измерения и служащий для определения длины линии измерения. Опорный наконечник — элемент, определяющий положение линии измерения в плоскости измерения. Координирующий наконечник — элемент, служащий для определения положения плоскости измерения на объекте контроля (измерения).  [c.113]

Передаточный механизм преобразует вид движения, изменяет значение и направление скорости исполнительного органа. В большинстве приборов реакция чувствительного элемента на изменение измеряемой величины, выражающееся в малом механическом перемещении, с помощью передаточного механизма, увеличивающего это перемещение, передается на отсчетное устройство. Механизмы приборов и вычислительных систем наряду с общими для всех механизмов признаками имеют ряд особенностей, ввиду чего методы их проектирования и расчета значительно отличаются от методов, применяемых в машиностроении.  [c.14]

Движущие силы /у, (или пары сил с моментом Гд) приложены к ведущим (входным) звеньям. Они служат для преодоления сил сопротивления в механизме. К числу движущих сил и моментов можно отнести силу давления газов на поршень двигателя внутреннего сгорания момент, развиваемый электродвигателем, заводной пружиной в пружинных двигателях действие среды, например силы давления жидкости или газа, на чувствительный элемент прибора.  [c.58]

Регулируемый объект I находится под внешним воздействием источника возмуи ения 2. В результате этого воздействия проис-ход.ит отклонение регулируемого параметра от заданного. Эти изменения воспринимаются чувствительным элементом 3, который передает необходимую информацию регулирующему органу 4, восстанавливающему заданный параметр у регулируемого  [c.398]

В машинном агрегате регулируемым объектом обычно бывает двигатель, а источником возмущения является рабочая машина, приводимая в движе1ше двигателем. Чувствительный элемент может быть механическим устройством, чаще всего механизмом регулятора центробежного типа, или электрическим типа  [c.398]


Кроме равномерного движения для выходного звена могут быть заданы и более сложные законы движения. Таковы, например, задачи о синтезе механизмов грохотов, конвейеров, самонакладов и многих других. К задачам о вослроизведенип заданного закона движения сводятся также задачи синтеза передаточных механизмов, применяемых в приборах для преобразования неравномерного движения чувствительного элемента в равномерное движение указательной стрелки. Например, в механизме дифференциального вакуумметра, схема которого показана ка рис. 27.2,  [c.552]

На рис. 238 приведен пример выполнения в двух вариантах схемы однокоординатного параллельного слежения и копирования. В этом случае задающим элементом является копир К, чувствительным элементом — золотник управления 3, преобразующим (или усилительным органом)—поршень 7 исполнительным органом является цилиндр 2, с которым жестко скреплен инструмент (на схеме резец изображен закрепленным непосредственно на цилиндре).  [c.284]

Одной 113 основных характеристик средств измерений линейных и угловых величин контактным методом является измерительное усилие, которое возникает в зоне контакта чувствительного элемент средства измерений с деталшю или другим исследуемым объектом.  [c.112]

Точные платиновые термометры сопротивления, предназначенные для измерения температур выше 100 °С, обычно имеют вид, показанный на рис. 5.13, и иногда называются стержневыми . Несмотря на свои многочисленные достоинства, капсульный термометр не годится для измерения высоких температур, поскольку сопротивление утечки между выводами в стеклянной головке становится слишком малым. Выводы высокотемпературного термометра изолируются друг от друга слюдой, кварцевыми или сапфировыми шайбами или трубочками. Собственно чувствительный элемент изготавливается обычно Из проволоки толщиной 0,07 мм, как и в капсульном термометре, и имеет сопротивление 25 Ом при 0°С. В типовых конструкциях [19—21] используется либо бифилярная намотка на слюдяную крестовину, либо спираль, помещенная в перевитые кварцевые трубочки, либо проволока в корундовых трубках (рис. 5.14). Во всех этих конструкциях стремятся свести к минимуму механические напряжения, чтобы проволока чувствительного элемента могла свободно расширяться и сжиматься при нагревании и охлаждении, не удерживаясь крепежными элементами. В тех конструкциях, где рроволока проходит близко к кожуху (рис. 5.14,а, в), тепловой контакт с окружающей средой лучше, а самонагрев меньше, чем в термометрах, где проволока заключена в дополнительную оболочку или проходит ближе к центру.  [c.209]

При измерении высоких температур термометрами сопротивления существенными становятся также радиационные тепловые потери вдоль термометра. Для термометров, имеющих кварцевый кожух, световодный эффект (многократное отражение внутри стенок кожуха) приводит к погрешности до 80 мК при 600 °С [22]. К счастью, тепловые потери за счет внутренних отражений легко ослабить, обработав пескоструйным аппаратом внешнюю поверхность кожуха или зачернив ее, например, аквадагом на длину в несколько сантиметров сразу за чувствительным элементом (см. рис. 5.13). Этот прием теперь используется при изготовлении всех стержневых термометров, включая и термометры в стеклянном кожухе, предназначенные для использования выше точки плавления олова (-230 С).  [c.213]

Перенос тепла излучением может, разумеется, происходить и в противоположном направлении, повышая температуру чувствительного элемента, если на элемент попадает излучение какого-либо внешнего источника. Такая ситуация возникает, например, при измерении температуры прозрачной жидкости в комнате, освещаемой лампами накаливания. Следует помнить, что тепловой эффект измерительного тока в 1 мА эквивалентен выделению на чувствительном элементе мощности в 25 мкВт. Высокотемпературный источник теплового излучения, например лампа накаливания в 150 Вт на расстоянии 3 м от термометра, вполне может создавать в направлении термометра поток излучения до 20 Вт на стерадиан. Если между термометром и источником теплового излучения нет поглощающей среды, на термометр может попадать до 9 мкВт теплового излучения, что для некоторых типов термометров будет эквивалентно нагреванию на 1 мК. Выход из положения в этом случае состоит, например, в помещении термометра в непрозрачную трубку, заполненную легким маслом для улучшения теплового контакта со средой. Необходимо следить за тем, чтобы между применяемыми здесь материалами не  [c.213]

Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Рис. 5.22. Чувствительный элемент платинового термометра сопротивления, изготовленный печатным способом (с разрешения фирмы Rosemount Engineering Ltd). Рис. 5.22. Чувствительный элемент <a href="/info/251578">платинового термометра сопротивления</a>, изготовленный печатным способом (с разрешения фирмы Rosemount Engineering Ltd).
Рис. 5.28. Платиновый чувствительный элемент для измерения температуры воздуха. Элементы такого типа используются в датчике температуры торможения, см. рис. 5.29 (с разрешения фирмы Rosemount Engineering Ltd). 1 — платиновая трубка 2 — листовая слюда 3 — платиновая проволока диаметром 0,05 мм 4 — термостойкий цемент. Рис. 5.28. Платиновый чувствительный элемент для <a href="/info/214238">измерения температуры</a> воздуха. Элементы такого типа используются в <a href="/info/128732">датчике температуры</a> торможения, см. рис. 5.29 (с разрешения фирмы Rosemount Engineering Ltd). 1 — платиновая трубка 2 — <a href="/info/191106">листовая слюда</a> 3 — <a href="/info/69386">платиновая проволока</a> диаметром 0,05 мм 4 — термостойкий цемент.

Выше предполагалось, что возможность точного измерения сопротивления заранее обеспечена. В прошлом развитие этого метода измерения температуры тормозилось отсутствием надежных методов электрических измерений. В настоящее время эти методы существуют, однако использование термометров сопротивления сопряжено с тремя проблемами, которые отсутствуют или по крайней мере не так остры при обычных электрических измерениях. Во-первых, это проблема возможного появления паразитной термо-э. д. с. (обычно порядка 1 мкВ) вследствие больших температурных перепадов в электрической схеме. Во-вторых, приходится ограничивать измерительные токи, чтобы свести к минимуму самонагрев чувствительного элемента. В-третьих, часто необходимо пользоваться длинными соединительными проводами. Высокое сопротивление длинных прово-  [c.256]

В современной технике эксперимента датчики сопротивления используются не только для замера деформаций. Во многих силоизмерительиых устройствах они вводятся как чувствительные элементы, реагирующие на изменение внешних нагрузок. Для замера усилий датчики сопротивления наклеиваются на деформируемый упругий элемент (стержень, вал, балку), и по изменению сопротивления датчика судят о величине действующего усилия. Такой способ удобен тем, что позволяет весьма просто осуществить дистанционный замер, без введения сложных дополнительных устройств.  [c.514]

При разработке норм точности, по которым выполняют окончательную приемку изделий, целесообразно устанавливать допускаемую погрешность нормируемого параметра для нового изделия и для изделия в конце срока его эксплуатации (до ремонта машины или HOBoi i юстировки прибора). Запас точности следует создавать не только по геометрическим параметрам, но и по электрическим, упругим и другим функциональным параметрам, изменяющимся в процессе работы изделия. Например, нужно предусматривать запас точности упругой характеристики чувствительных элементов приборов, длины волны резонансных электромагнитных колебаний в резонаторных системах, определяющих качество электровакуумных приборов, II т. д.  [c.28]

Для восприятия лучистой энергии используют различные приемники термобатареи, болометры, термисторы II т. д. Спаи термопар, чувствительные элементы болометров и термисторов хорошо зачернены с целью создания неселективности термоприемников в широком диапазоне длин волн. Однако следует заметить, что к данным, полученным радиационным методом, следует относиться с осторожностью. Необходимо учитывать, что для увеличения чувствительности метода применяют линзы и другие фокусирующие устройства кроме того, часто используют радиационные пирометры. Использование оптических элементов приводит к тому, что приемник воспринимает излучение неполно и в ограниченной области спектра. Поэтому, как оправедливо отмечено в [131], использование пределов интегрирования, показанных в формуле (6-69), не правомерно. В этом случае степень черноты интегральна лишь в пределах полосы пропускания оптической системы, т. е.  [c.164]

Под сильно нелинейной с11стемой обычно понимают либо динамическую систему, не допускающую линеаризации в малом, либо систему, в которой проявляются нелинейные эффекты, не обнаруживаемые квазилинейной теорией. К таким системам относятся релейные системы автоматического регулирования, динамические системы с ударным взаимодействием, системы с люфтом и сухим трением и др. Одним из эффективных методов изучения динамики сильно нелинейных систем, поведение которых описывается дифференциальными уравнениями (4.1) с кусочно-гладкими правыми частями, является метод точечных отображений. Этот метод, зарождение которого связано с именем А. Пуанкаре и Дж. Биркгофа, был введен в теорию нелинейных колебаний А. А. Андроновым. Установив связь между автоколебаниями и предельными циклами А. Пуанкаре и опираясь на математический аппарат качественной теории дифференциальных уравнений, А. А. Андронов сущест-Еенно расширил возможности метода припасовывания и сформулировал принципы, которые легли в основу метода точечных отображений и позволили эффективно использовать этот метод при исследовании конкретных систем автоматического регулирования и радиотехники. С помощью метода точечных отображений оказалось возможным полностью решить ряд основных задач теории автоматическою регулирования и, в первую очередь, классическую задачу И. А. Вышнеградского о регуляторе прямого действия с сухим трением в чувствительном элементе [1, 2J. Была рас-  [c.68]


Смотреть страницы где упоминается термин Чувствительные элементы : [c.398]    [c.400]    [c.552]    [c.24]    [c.111]    [c.7]    [c.212]    [c.223]    [c.228]    [c.378]    [c.515]    [c.478]    [c.268]   
Смотреть главы в:

Силовые авиационные установки  -> Чувствительные элементы


Температурные измерения (1984) -- [ c.135 , c.139 ]



ПОИСК



334 — Чувствительность

Взаимоиндуктивные (трансформаторные) чувствительные элементы Магнитные элементы

Влияние температуры на характеристики упругих чувствительных элементов

Восстанавливающая сила чувствительного элемента

Г-равнение движения чувствительного элемента нагрузки

Генераторные чувствительные элементы

Д. А. Браславский, инж. А. М. Дкубович, Улучшение динамических характеристик чувствительных элементов с помощью обратной связи

Датчик локационный с емкостными чувствительными элементами

Датчик локационный с оптическими чувствительными элементами

Датчик локационный с пьезоэлектрическими чувствительными элементами

Датчик локационный с электромагнитными чувствительными элементами

Дифманометры с упругими чувствительными элементами

Емкостные чувствительные элементы

Индуктивные чувствительные элементы

Индукционные чувствительные элементы

Компенсация погрешностей, вызываемых изменением упругости чувствительных элементов и линейных размеров звеньев передаточных механизмов

Магнитоэлектрические чувствительные элементы

Магнитоэлектрические, электромагнитные, электродинамические чувствительные элементы

Магнитоэлектрический чувствительный элемент для измерения скорости вращения

Общие сведения и основные свойства упругих чувствительных элементов

Параметрические преобразовательные (чувствительные) элементы

Переходные процессы механического чувствительного элемента

Переходные процессы пневматического чувствительного элемента

Поддерживающая сила чувствительного элемента

Приборы давления с упругими чувствительными элементами

Приборы с чувствительными элементами из эпоксидных смол

Пьезоэлектрические чувствительные элементы

РАСЧЕТ ЭЛЕКТРОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ ПЕР

Расположение чувствительных элементов

Регулятор с чувствительным элементом типа сопло—заслонка

Регуляторы чувствительные элементы

Свойства и характеристики материалов, применяемых для изготовления упругих чувствительных элементов

ТС с чувствительными элементами из других материалов

Термоэлектрические чувствительные элементы

Технология изготовления упругих чувствительных элементов

Упругие чувствительные элементы для измерения давления газов и жидкостей

Упругие чувствительные элементы. Инерционные элементы

Упругий чувствительный элемент 363, 365Уравнение расхода

Упругий чувствительный элемент сжимаемой жидкости

Уравнение движения гидравлического чувствительного элемента

Уравнение движения муфты механического чувствительного элемента

Уравнение движения муфты пневматического чувствительного элемента

Уравнение движения пневматического чувствительного элемента

Уравнение движения чувствительного элемента

Уравнение равновесия муфты чувствительного элемента. Равновесные кривые

Установка для измерения и подгонки сопротивления чувствительного элемента ТСП

Фактор устойчивости чувствительного элемента регулятора

Характеристики упругого чувствительного элемента. Упругое последействие и гистерезис

Чувствительность упругого элемента

Чувствительные элементы системы угловой стабилизации

Электродинамические и фсрродинамические чувствительные элементы

Электролитические чувствительные элементы

Электромагнитные чувствительные элементы

Электронные чувствительные элементы

Элемент средства измерений чувствительный

Элемент чувствительный термометра

Элемент чувствительный термометра сопротивления

Элемент чувствительный упругий



© 2025 Mash-xxl.info Реклама на сайте