Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отражатель

J — дуговая лампа 2 — отражатель 3 — экранирующая насадка 4 — стол для закрепления свариваемых деталей  [c.166]

Использование в активной зоне конструкционных материалов с малым сечением поглощения нейтронов, в частности графита в качестве замедлителя и отражателя, карбидов или окислов урана и тория в качестве ядерного горючего. Это увеличивает глубину выгорания горючего и коэффициент воспроизводства и уменьшает стоимость собственно реактора.  [c.3]


В проекте реактора ВГР по принципу одноразового прохождения активной зоны шаровыми твэлами мощностью 500 МВт с уран-плутониевым топливным циклом приведены данные по температуре газа и топлива активной зоны с профилированием тепловыделения и без профилирования. Оптимальная концентрация— рс/рм=350, средняя объемная плотность теплового потока в зоне — 5 кВт/л. Активная зона высотой 568 см и диаметром 473 см окружена графитовым отражателем толщиной 40 см сверху, 150 см снизу и 100 см сбоку и заполнена шаровыми твэлами диаметром 60 мм. Применение двух зон с разным обогащением снижает радиальную неравномерность и повышает температуру гелия на выходе из реактора от 810 до 950° С.  [c.21]

В ядерных реакторах с шаровыми твэлами практически отсутствует ламинарный режим течения теплоносителя, поскольку наличие касания шаровых твэлов между собой и стенками канала или отражателя и резкое изменение сечения для прохода теплоносителя способствуют раннему образованию турбулентного, а затем и отрывного вихревого течения. Раньше  [c.46]

Толщина пристеночного слоя, подверженного структурному изменению, зависит в основном от конфигурации бокового отражателя, соотношения коэффициентов трения шаровой насадки и шара по плоскости и количества перегрузок активной зоны. Следовательно, если в начале эксплуатации бесканальной зоны объемная пористость пристеночного слоя больше средней объемной пористости, а скорость в нем выше средней по всему сечению, то при стабилизации структуры можно ожидать в пристеночном слое уменьшение скорости теплоносителя.  [c.87]

Свойства параболы широко используются при изготовлении зеркал прожекторов, отражателей, антенн и т. п. (используется свойство если источник света поместить в фокусе параболы, то отраженные лучи будут параллельны между собой).  [c.25]

Спрямляющее устройство в этом случае может быть только периферийным, т. е. оно должно быть удалено от электродов. Для этого автором предложено за щелями внутренней стенки 3 (кольцевой решетки) кольцевого канала установить односторонние козырьки-отражатели 4 (рис. 8.9). Такая решетка с козырьками может быть создана или штамповкой металлического листа с установкой образуемых при этом односторонних козырьков под определенными углами (вариант I), или путем приварки (другим способом крепления) радиально к соответствующим краям отверстий (щели) кольцевой решетки прямых пластин 5 (вариант II). Назначение козырьков — изменить направление струек, отделяющихся от общего потока в кольцевом канале, по крайней мере на 90°, а у ближайших ко входу щелей — больше чем на 90° для равномерного распределения потока по сечению 1—У за кольцевым каналом. Однако козырьки при штамповке получаются относительно короткими ( J ,,,, Ьщ) и при радиальном расположении не могут изменять направления струек на нужные углы.  [c.215]


Таким образом убеждаемся, что кольцевой подвод с дискретными щелями во внутренней стенке кольцевого канала, снабженного козырьками-отражателями, обеспечивает вполне равномерное распределение скоростей в сечении 1—] корпуса аппарата и в случае узла изоляции коронирующей системы электрофильтров — совершенно равномерное распределение скоростей в выходном сечении 2—2 этого узла.  [c.216]

Карман электрофильтра 89, 217, 239, 242 Кинетическая энергия струек 239 Козырек 74, 216, 225, 236 Козырек — отражатель 215, 216 Колено 3, 15, 37, 47, 78, 193, 219  [c.346]

Объемную плотность тепловыделения в уране принять постоянной по сечению и изменяющейся по длине по косинусоидальному закону (реактор без торцевых отражателей). Если начало координат расположить в середине по длине твэла, то при х—0 ro=2,2X Х10 Вт/мз.  [c.132]

Объемную плотность тепловыделения в уране Qb принять постоянной по сечению и изменяющейся по длине по косинусоидальному закону (реактор без торцевых отражателей)  [c.251]

До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]

Излучательная способность полостей, сделанных из чисто зеркальных отражателей, вычисляется иным, обычно значительно более простым путем. Излучательная способность вычисляется непосредственно через число отражений п, которое испытает падающий луч прежде, чем он выйдет из полости. Ниже будут рассмотрены некоторые простейшие геометрические конструкции, которые используются для нахождения значений п полостей обычной формы.  [c.329]

Оба описанных выше метода требуют применения дополнительного источника теплового излучения. В промышленности широкое применение нашел другой, более простой метод [35]. Вместо отдельного дополнительного источника здесь используется сама поверхность совместно с позолоченным полусферическим зеркалом, которое находится в контакте с поверхностью или в непосредственной близости от нее. Для измерений плотности излучения внутри полусферы в качестве детектора используется кремниевый фотоэлемент. Если полусфера является идеальным отражателем (коэффициент отражения золота в инфракрасной области больше 99%), а площадь поверхности полусферы, занятая кремниевым элементом, пренебрежимо мала.  [c.391]

В системах, используемых для сварки световым лучом, концентрация энергии в пятне нагрева достигает 10 Вт/см и может быть увеличена при применении специальных линз и отражателей. Принципиальная схема оптических систем для сварки и пайки приведена на рис. 12.  [c.18]

Методы расчета выбираются в зависимости от условий работы конструкции и требований, которые к ней предъявляются. Если необходимо добиться наименьших изменений формы конструкции, например при проектировании отражателя прожектора или системы зеркал астрономического прибора, производится расчет по допускаемым перемещениям, или, как говорят, расчет на жесткость. Это не исключает, попятно, одновременной проверки системы на прочность по напряжениям.  [c.28]


Кроме участия в процессе деления нейтроны претерпевают также упругое и неупругое рассеяние на ядрах, содержащихся в активной зоне, и радиационный захват. Нейтроны замедляются и диффундируют, часть из них утекает в отражатель, часть переходит обратно в активную зону. В результате конкуренции различных процессов устанавливается определенное пространственно-энергетическое распределение нейтронов в активной зоне, которое необходимо знать при проведении детального анализа зашиты.  [c.10]

Энергетический спектр нейтронов в реакторе зависит от пространственной координаты, т. е. он неодинаков в разных компонентах активной зоны и, в частности, зависит от расстояния до центра активной зоны, близости к отражателю, регулирующим органам и т. д. Пространственно-энергетическое распределение нейтронов в реакторе определяется уравнением переноса, решение которого в общем случае — очень сложная задача (см, гл. IV).  [c.16]

Для практических расчетов защиты реактора часто достаточно знать усредненный по пространству спектр плотности скалярного потока нейтронов в активной зоне или связанный с ним интегральный спектр потока нейтронов Фо( ) = гФо(г, ). В первом приближении этот спектр можно считать близким к гипотетическому спектру соответствующей бесконечной однородной среды того же состава, что и усредненный состав активной зоны. Таким образом, при этом пренебрегают конечностью размеров активной зоны и влиянием отражателя. Уравнение для спектра в бесконечной среде о( ) получается при интегрировании уравнения переноса по всем пространственным и угловым переменным (см. 4. 1)  [c.16]

Разработаны способы учета влияния ограниченности активной зоны, т. е. утечки из нее, и наличия отражателя на спектр нейтронов в активной зоне. В частности, можно получить выражение интегрального спектра нейтронов в активной зоне в Р]-приближении метода сферических гармоник.  [c.18]

Здесь 7о(г, ) = 7о(г)х( ) — распределение источников нейтронов деления. Последние члены в этих уравнениях учитывают влияние на поле нейтронов областей, окружающих активную зону (отражателя и защиты)  [c.18]

Особенность этих-реакторов — бесканальная активная зона, образованная графитовой кладкой, и коническая конфигурация нижнего отражателя — пода с одним центральным каналом выгрузки шаровых твэлов, заполняющих собственно активную зону. И опытный, и промышленный прототипы энергетического реактора выполнены по одной топливной схеме с многократной перегрузкой шаровых твэлов, вызванной существенной неравномерностью скоростей прохождения активной зоны шаровыми твэлами при наличии только одной выгрузки. В настоящее время этот существенный недостаток конструкции подробно обсуждается специалистами [18]. Предложены мероприятия, связанные с усложнением конструкции, но позволяющие обеспечить более равномерное продвижение всех шаровых твэлов и осуществить принцип одноразового прохождения активной зоны. Как указывалось выше, это даст возможность получить большие объемную плотность теплового потока и глубину выгорания и более высокую температуру гелия на выходе из реактора.  [c.17]

При разработках высокотемпературных энepгotexнoлoгичe-ских ядерных установок с реакторами ВГР на температуру гелия 900° С и выше ориентируются практически невыполнение реактора ВГР с шаровыми твэлами по принципу норазового прохождения активной зоны либо с несколькими каналами выгрузки, либо со специально выполненной конструкцией нижнего графитового отражателя — пода, обеспечивающей достаточную равномерность движения шаровых твэлов в активной зоне [19].  [c.17]

Теплопроводность изотропного графита при облучении при T Mnepaitype выше 600° С на 30—40% ниже, чем теплопроводность без облучения, коэффициент линейного расширения в результате облучения интегральным потоком нейтронов 4-1021 нейтр./см2 при температуре выше 1000°С сначала увеличивается примерно на 20%, а потом уменьшается на 30—75% начального значения. Физико-механические характеристики прессованных сортов графита под влиянием облучения меняются больше, чем изотропных сортов. Изменения происходят в направлениях вдоль и поперек оси прессования или выдавливания, причем эти изменения по осям довольно различи , что практически исключает возможность использования анизотропных сортов графита в виде крупноразмерных блоков в качестве конструкционного материала активной зоны реактора В ГР с призматическими твэлами [6]. Этот факт является весьма важным доказательством преимущества варианта реактора ВГР с шаровыми твэлами, поскольку твэлы при достижении интегрального потока (5—7)-10 нейтр./см и глубине выгорания топлива 10—15 /о выводятся из активной зоны, графитовые же блоки отражателя находятся в зоне существенно меньших температур и потоков нейтронов.  [c.29]

Для механической обработки используют твердотелые ОКГ, рабочим элементом которых является рубиновый стержень, состоящий из оксидов алюминия, активированных 0,05 % хрома. Рубиновый ОКГ работает в импульсном режиме, генерируя импульсы когерентного монохроматического красного цвета. При включении пускового устройства ОКГ электрическая энергия, запасенная в батарее конденсаторов, преобразуется в световую энергию импульсной лампы. Свет лампы фокусируется отражателем на рубиновый стержень, и атомы хрома приходя в возбужденпое состояние. Из этого состояния они могут возвратиться. в нормальное, излучая с(ютоны с длиной волны 0,69 мкм (красная флюоресценция рубина).  [c.414]

Следует отметить, что отражатели, аналогичные описанным, могут быть применены для аппаратов не только цилиндрической формы, но и других фор.м (прямоугольной, с наклонными проницаемыми перегородками и т. и.). В некоторых случаях предлагаемые отражатели могут с ужить в качестве основного каркаса, на котором укреплены фильтровальные перегородки из волокон, ткани, набивок и пр. Предлагаемые устройства не являются источниками дополнительных потерь давлений. Особенно это относится к вариантам б—ж, и.  [c.306]


Рассмотрим цилиндрический акустический интерферометр с площадью поперечного сечения А, заполненный газом со средней плотностью р, в котором скорость звука равна с. Обозначим акустический коэффициент затухания через а, длину волны — через Л, волновое число к=2п1Х и / г и Нг — коэффициенты отражения соответственно отражателя и излучателя, которые в общем случае могут быть комплексными. Сумма механического импеданса излучателя Zt и газа ZL(l) составляет полный импеданс Z(l), где I — длина полости, поскольку и сам излучатель, и газовый столб влияют на величину скорости.  [c.102]

Третий и последний аспект акустической интерферометрии, который следует рассмотреть, связан с формой нормальных мод в процессе распространения акустических волн в трубе. Строго говоря, необходимо решить волновое уравнение для цилиндрического канала с жесткими стенками, на одном конце которого находится излучатель, являющийся источником гармонических колебаний, а на другом — отражатель. Метод Крас-нушкина [47], который в дальнейшем был развит Колклафом  [c.107]

Рис. 3.12. Акустический интерферометр НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — постоянный магнит С и О — электрические экраны Е— пьезоэлектрический датчик ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится уголковый отражатель / — германиевые термометры сопротивления / — уголковый отражатель J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — радиационный экран 5 — термометр сопротивления Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием. Рис. 3.12. <a href="/info/373900">Акустический интерферометр</a> НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — <a href="/info/38894">постоянный магнит</a> С и О — электрические экраны Е— <a href="/info/128731">пьезоэлектрический датчик</a> ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится <a href="/info/362781">уголковый отражатель</a> / — <a href="/info/425226">германиевые термометры сопротивления</a> / — <a href="/info/362781">уголковый отражатель</a> J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — <a href="/info/251815">радиационный экран</a> 5 — <a href="/info/3942">термометр сопротивления</a> Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием.
В полостях, в которых отношение размера отверстия к размеру самой полости очень мало. В этих условиях подробности угловых характеристик отражения и излучения стенок не являются критическими, так как общий эффект влияния отверстия мал. В пирометрии по излучению применяют полости удобной формы, и поэтому подробные данные об угловых зависимостях оптических характеристик поверхностей не нужны. Если не учитывать полости, имеющие очень необычную геометрию, то предположение о диффузном, или ламбертовском, характере излучения, как правило, приводит к весьма малым ошибкам, так как только при очень больших углах к нормали это предположение перестает быть верным. Предположение о том, что все материалы диффузно отражают тепловое излучение, значительно менее оправданно. В действительности все металлы и большинство других поверхностей, если они отполированы, являются зеркальными отражателями излучения, и это необходимо учитывать. Методы огрубления поверхности позволяют  [c.328]

Рис. 5.16. Эталонные отражатели а плоокодоннос отверстие б — боковой цилиндрический-. а — угловой г —сегментный Рис. 5.16. Эталонные отражатели а плоокодоннос отверстие б — боковой цилиндрический-. а — угловой г —сегментный
Изделия из 2гОг используют в качестве нагревательных элементов в высокотемпературных печах и отражателей в атомных реакторах. Порошкообразный 2г02 с жидким стеклом используют для обмазки корундовых и шамотных изделий.  [c.381]

Схема оптического квантового генератора с вихревым охлаждением активного элемента — излучателя показана на рис. 6.10. Активный элемент I размещен в оправках на оси камеры энергоразделения 2, изготовленной из прозрачного материала — кварцевого стекла. Сжатый газ подается в полость камеры энер-горазделения через тангенциальное сопло в виде интенсивно закрученного потока. На удаленном от соплового ввода конце камеры энергоразделения установлен щелевой диффузор 3. Ось вихревой трубы совмещена с одной из фокальных осей эллиптического отражателя 4. В другой его фокальной плоскости под камерой энергоразделения 2 размешена лампа накачки 5. Эллиптический отражатель 4 имеет зеркальную внутреннюю поверхность. Регулирование интенсивности охлаждения излучателя осуществляется сменой работы вихревой трубы путем изменения щелевого зазора при перемещении подвижной щеки диффузора. Время выхода оптического генератора на установившийся режим определяется теплогенерационными свойствами охлаждаемого активного элемента-излучателя.  [c.296]

Этот метод интенсификации позволяет с помощью однофазного теплоносителя охлаждать сплошную стенку, подверженную воздействию больших тепловых потоков, например при конвективном охлаждении стенок ракетных двигателей (рис. 1.8) и лопаток их газовых турбин, элементов электронной аппаратуры и других теплонапряженных устройств. В частности, за счет охлаждения прокачкой воды через проницаемую подложку может быть обеспечена надежная рабрта лазерного отражателя. Такой способ охлаждения в настоящее время - единственный при малых размерах или сложной форме нагреваемых конструкций, в которых невозможно выполнить каналы для охладителя. Например, лопатки малых газовых турбин ракетньи двигателей с максимальной толщиной профиля порядка 3 мм, хордой около 2 см и длиной от 1 до 2 см обычно не охлаждаются, что ограничивает температуру газового потока и эффективность таких турбин. Изготовление лопаток из волокнистого металла 1 (рис. 1.9), покрытого снаружи тонким герметичным слоем керамики 2 и охлаждаемого продольным потоком газа, вытекающего через вершину, позволяет снять эти ограничения.  [c.12]

Образец СО-1 (рис. 4.10) предназначен для определения условной чувствительности дефектоскопа с преобразователем (преобразователь в положении А), а также для определения погрешности глубиномера (преобразователь в положении Б) и проверки разрешающей способности при работе прямым или наклонным преобразователем. Условная чувствительность Ку дефектоскопа с преобразователем, измеренная по образцу СО-1, выражается максимальной глубиной расположения (в миллиметрах) цилиндрического отражателя, уверено фиксируемого индикаторами дефектоскопа. Глубина расположения отражателя показана цифрами на обргоце. Согласно ГОСТ 14782 исходный и выпускаемые государственные стандартные образцы изготавливают из органического стекла с единым значением коэффициента затухания продольной волны при частоте 2,5 МГц 10%, лежащим в пределах 0,26...0,34 мм .  [c.205]

На рис. 8-39 [215] показана схема холодильника абсорбционно-диффузионного действия. Промежуточный теплоноситель (глицерин) нагревается до температуры 150—170°С в трубчатом котле 2, а затем поступает в теплообменник 3, внутри которого помещен генератор холодильного агрегата. Котел помещен в фокусе параболоцилиндрического отражателя 1. Когда часть тепла глицерина передастся генератору, в котором кипит водо-  [c.228]


С точки зрения расчета защиты реактора представляет интерес сравнить интенсивность потоков излучений, выходящих из активной зоны или отражателя различных типов реакторов. Эта интенсивность зависит от мощности реактора, его конструкции, назначения. Однако можно привести некоторые средние цифры. Так, в уран-графи-товом реакторе плотность потока нейтронов, падающих на защиту, достигает (1ч-2)-10 нейтрон/ (см сек), плотность потока энергии у-квантов 2-10 2 Мэв/ см сек)-, до 95% потока нейтронов составляют медленные и тепловые нейтроны. В водо-водяном реакторе плотность потока нейтронов, как правило, не превышает 1X ХЮ нейтрон/ см --сек), интенсивность потока энергии у-квантов 5-10 з Мэе/(см -сек), причем в спектре нейтронов примерно 50% быстрых и промежуточных. В реакторах на быстрых нейтронах плотность потока нейтронов составляет до 5-10 —1-10 нейтрон/ см -сек), плотность потока энергии у-квантов - 10 3 Мэе/ см --сек). Максимум в спектре нейтронов, падающих на защиту, обычно соответствует нейтронам с энергией 50—100 кэв. Для примера на рис. 9. 1 приведен спектр нейтронов, выходящих из быстрого реактора Ферми с натриевым теплоносителем. Он существенно мягче спектра нейтронов в активной зоне этого реактора и мягче спектра нейтронов деления, подробно описанного в 9. 2.  [c.9]


Смотреть страницы где упоминается термин Отражатель : [c.166]    [c.395]    [c.226]    [c.304]    [c.304]    [c.329]    [c.388]    [c.130]    [c.133]    [c.380]    [c.18]    [c.96]    [c.221]    [c.99]   
Введение в ядерную физику (1965) -- [ c.37 , c.718 ]

Тепловое и атомные электростанции изд.3 (2003) -- [ c.137 ]

Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.455 ]

Автомобиль Основы конструкции Издание 2 (1986) -- [ c.100 ]

Электрооборудование автомобилей (1993) -- [ c.103 , c.106 ]

Физические основы ультразвуковой технологии (1970) -- [ c.44 , c.86 ]

Ультразвуковая дефектоскопия (1987) -- [ c.119 , c.123 , c.125 , c.127 , c.190 , c.198 ]



ПОИСК



Алфавитный ука уголковый отражатель

Алюминирование отражателей ламп-фар

Алюминирование стальных отражателей путем распыления алюминия в вакууБороздина (Москва)

Амплитуда отражения при изменении взаиморасположения преобразователя и отражателя

Анализ отражателей

Больцмана распределение отражатель

Брэгговские отражатели

Измерение больших отражателей, сканирование, динамика эхоимпульсов

Импеданс входной отражателя

Импеданс входной отражателя преобразователя

Импеданс входной отражателя фильтра

Интерферометр для измерения скорости звука при фиксированным расстоянием до отражателя

Козырек — отражатель

Кубический уголковый и крышеобразныи отражатели

Лазеры с РБО (распределенным брэгговским отражателем)

Лазеры с РБО (распределенным брэгговским отражателем) метод блоховских волн

Лазеры с РБО (распределенным брэгговским отражателем) связью)

Металлические и диэлектрические отражатели

Модель эквивалентной схемы отражателя

Наклонные круглые дисковые и естественные отражатели

ОПЫТЫ ПО ИНТЕРФЕРЕНЦИИ СВЕТА ОТ ПЛОСКОГО ДИФФУЗОРА, СОЧЕТАЕМОГО С УСТАНОВЛЕННЫМ ПАРАЛЛЕЛЬНО ЕМУ ОТРАЖАТЕЛЕМ

Обратные отражатели

Определение эквивалентного отражателя, эталонного дефекта и АРД (AVG)-диаграммы

Отражатели Манжена

Отражатели Манжена 862, XVII

Отражатели Манжепа

Отражатели вогнутые стеклянны

Отражатели вогнутые сферически

Отражатели вогнутые сферические

Отражатели гиперболические

Отражатели зеркальные

Отражатели кольцевые сферически

Отражатели кольцевые сферические

Отражатели масляные

Отражатели параболические

Отражатели с копараболическими

Отражатели с копараболическими поверхностями

Отражатели с копараболическими поверхностями 868, XVII

Отражатели с копараболическимн

Отражатели с копараболическимн поверхностями

Отражатели сфероидальные

Отражатели эллиптические

Отражатель искусственный

Отражатель ламбертовский

Отражатель металлический короткофокусный

Отражатель нейтронов

Отражатель нейтронов Отрицательная» энергия

Отражатель плоский

Отражатель с пазами

Отражатель сферический

Отражатель уголковый

Отражатель фары

Отражатель—фазовращатель

Отражение плоской волны от плоского отражателя

Получение контрастной интерференционной картины при большом удалении отражателя от диффузора

Радиотелескопы со сферическими отражателями

Резонатор с уголковыми отражателями

Резонаторы с возвратными отражателями . Резонаторы с вращением поля

Стоячие волны в резонаторам с нрышеобразпымн отражателями

Тень от отражателя

Теория связанных мод для брэгговских отражателей

Угловой отражатель

Эффективная добавка отражателя

Эхо-сигнал от отражателя, AVG (АРД)-диаграмма



© 2025 Mash-xxl.info Реклама на сайте