Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения в высших порядков

Решение системы а дифференциальных уравнений в частных производных типа (П6-4), связанных между собой нелинейными членами, требует очень сложных расчетов. Их следует проводить в разумных приближениях. Поэтому для каждой конкретной проблемы, как правило, следует оценить те члены, которыми можно пренебречь. Помимо названных материальных констант, должны учитываться реальные условия, в которых протекают исследуемые процессы длительность взаимодействующих групп волн (длительность импульса), длина кюветы, время установления колебаний, коэффициенты усиления, время разбегания групп волн, взаимодействие различных эффектов НЛО. Для обработки математической части этой задачи преимуществом обладает фурье-представление уравнения (П6-4). В этой связи сошлемся на выкладки, приведенные в конце разд. 1.321. В фурье-представлении отдельные члены принимают вид членов разложения в ряд по степеням fk или q(fh), что значительно облегчает количественные оценки. Так, например, отношение третьего слагаемого ко второму слагаемому в левой части обычно имеет порядок отношения q(fh)lq fh), а отношение пятого слагаемого к четвертому — порядок fft/fft. При соответствующих экспериментальных условиях может оказаться полезным перейти от координат t я z к другим координатам, чтобы можно было описать нестационарное поведение при помощи наиболее простого дифференциального уравнения (пренебречь производными высших порядков). Такое упрощение может быть достигнуто (см., например, [21]), если считать волновую амплитуду Е зависящей от координат Z и w t — Z. Вторая координата позволяет непосредственно задать изменение Е в системе, движущейся вместе с группой волн (групповая скорость w ). Упрощение дифференциального уравнения может быть достигнуто, если при соответствующих экспериментальных условиях исходить из допущения, что Е лишь относительно медленно меняется с изменением г при постоянном значении w t — Z.  [c.233]


ВЫХ или необязательно в канонических переменных ). Как и в каноническом случае, эти методы предполагают наличие быстрой переменной по одной степени свободы и медленных по остальным степеням свободы и содержат усреднение на коротком масштабе времени. Будучи эффективными и очень обш,ими, эти методы неизбежно оказываются и очень громоздкими, особенно в высших порядках. В канонической формулировке дифференциальные уравнения получаются из скалярной функции Н это же касается и преобразования переменных, которое определяется скалярной производящей функцией. В случае общего метода усреднения эти упрощающие обстоятельства отсутствуют.  [c.115]

Теорема 2.1. Если все корни характеристического уравнения системы уравнений первого приближения имеют отрицательные вещественные части, то невозмущенное движение устойчиво и притом асимптотически, каковы бт,1 ни были члены высших порядков в дифференциальных уравнениях возмущенного движения.  [c.83]

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.  [c.435]

Учитывая, что при дифференцировании по и qj порядок малости понижается на единицу, значения Т и П следует, как отмечалось, вычислять с точностью до малых величин второго порядка малости. Хотя пренебрежение малыми величинами высших порядков малости вносит некоторую погрешность в полученные результаты, но эта погрешность компенсируется значительным упрощением теории колебаний. В этом случае движение системы определяется линейными дифференциальными уравнениями.  [c.22]


Штрих означает производную . Здесь Р ж Q — заданные функции Z. Это дифференциальное уравнение второго порядка — фундаментальное в электронной оптике им в основном и определяется образование изображения в электронном микроскопе ). Чтобы исследовать аберрации, нужно привлечь приближения высших порядков ).  [c.113]

Работа сорбционных фильтров в условиях равновесия может происходить лишь при очень малых скоростях фильтрования, а в случае ионитных фильтров — при малых размерах зерен ионитов. В практике эти условия обычно не соблюдаются, и поэтому работа сорбционных фильтров проходит в неравновесных условиях, когда основную роль играют кинетические факторы. Учет последних применительно к определению фронта фильтрования приводит к сложным дифференциальным уравнениям высшего порядка. Предложенные различными авторами упрощения и допущения (некоторые из которых носят чисто формальный характер) нуждаются в экспериментальной проверке.  [c.208]

Легко видеть, что обычная теория возмущений к этой задаче не применима, так как член, учитывающий вязкость vV u, в уравнении (3) имеет самый большой порядок и, следовательно, возмущение вязкости V относительно значения v = О есть сингулярное возмущение ). Тип уравнений в частных производных обычно определяется членами наивысшего порядка. Таким образом, пренебрежение членами высшего порядка ведет к стиранию различий между типами уравнений. Даже для обыкновенных дифференциальных уравнений такого вида, как гу" -f i/ = О, с краевыми условиями у(0)—а,у( )=Ь, мы получаем в пределе совершенно различные картины в зависимости от того, положить ли e-i- + О или е-4— 0.  [c.61]

В линейной теории вычисления могут быть проведены относительно простыми аналитическими средствами, так как линеаризированные уравнения потока в основном совпадают с уравнениями волнового движения малой амплитуды. Следовательно, многие хорошо известные методы теории волн могут быть применены в такой упрощенной сверхзвуковой аэродинамике это особенно справедливо для случая тонких тел вращения (например, для фюзеляжа самолета, корпуса снаряда и для плоских тел, подобных крылу самолета). В этих случаях может быть сделано дальнейшее упрощение, которое касается граничных условий задачи, а именно, требования плавного обтекания. Это условие определяет, в случае осесимметричного потока, направление вектора скорости на поверхности, а в случае плоского тела — направление составляющей вектора скорости, лежащей в плоскости нормальной к средней поверхности тела. Линеаризированные дифференциальные уравнения при указанных граничных условиях можно решить точно, но, обычно, приходится применять численные и графические методы. Поэтому желательно дальнейшее упрощение задачи, которое достигается с помощью предельного перехода от точных граничных условий к условиям, относящимся к оси тела вращения или к плоскости плана крыла вместо действительной поверхности. Приводимые ниже результаты основаны на этом приближении. Строго говоря, только это приближение согласуется с допущениями линейной теории, потому что если удовлетворить граничным условиям на действительной поверхности, то, в рассмотрение, вообще, войдут члены высшего порядка, которые были отброшены в дифференциальных уравнениях.  [c.13]

Если производная высшего порядка входит линейно в нелинейное дифференциальное уравнение, то уравнение называется квазилинейным. Т аким образом,  [c.253]

Естественная идея повышения точности метода Эйлера могла бы заключаться в использовании большего числа членов разложения в ряд Тейлора (6.5) и (6.6). Однако методы рядов Тейлора высших порядков [195, 196] имеют малое практическое значение, так как основаны на отыскании высших производных функции f в заданных точках. Как известно, численное дифференцирование является весьма неточной процедурой, особенно если ее необходимо повторять много раз. Поэтому мы ищем процедуру, которая была бы аналогична разложению в ряд Тейлора до членов кр (где р называется порядком метода). Но которая не требовала бы вычисления каких-либо производных функции /(2, у, у ). Наиболее элегантная одношаговая процедура, которая удовлетворяет этому требованию, — метод Рунге — Кутта [194]. Ниже будет рассмотрен метод Рунге—Кутта четвертого порядка для решения дифференциального уравнения второго порядка (6.1).  [c.359]


Мы положили здесь магнитную проницаемость равной 1 есть линейная часть поляризации, которая в свою очередь через восприимчивость первого порядка линейно связана с напряженностью поля. Из дифференциального уравнения (2.23-2) следует система т дифференциальных уравнений для отдельных амплитуд парциальных волн [явное представление дано в ч. I, Приложение 6, уравнение (П6-4)] с частными производными по пространственным и временным координатам различных высоких порядков. При соответствующих физических условиях высшими производными можно пренебречь, при этом возникает вопрос о том, насколько сильно амплитуды напряженности поля и поляризации меняются в пространстве по сравнению с / и во времени по сравнению с а>г Мы примем, что пространственная структура волн не испытывает изменений под влиянием взаимодействия (что соответствует представленной в 1 концепции мод) это означает, что можно положить равными нулю все пространственные производные. Далее, действие нелинейной поляризации можно рассматривать как малое возмущение в том смысле, что  [c.198]

Ясно, что поведение всей системы в целом должно зависеть от поведения и свойств каждого отдельного звена и влияния их друг на друга. Предположим, что для каждого звена от входной величины зависят сама величина на выходе и ее первая и вторая производные по времени. Тем самым мы приписываем каждому нашему простейшему звену свойства, которые описываются дифференциальным уравнением второго порядка. Могут быть случаи, когда свойства реального звена потребуют и третьей производной, и, может быть, производных высшего порядка, но в более сложных случаях мы всегда можем представить такое  [c.20]

Сделаем теперь важное замечание о той степени точности, с которой мы будем вести дальнейшие вычисления. Во всем дальнейшем мы будем составлять дифференциальные уравнения малых колебаний с точностью лишь до членов первого порядка малости (включительно). Пренебрегая малыми величинами высших порядков малости, мы вносим, конечно, некоторую погрешность в наши результаты, но эта погрешность окупается тем огромным упрощением теории вопроса, которое достигается введением линеаризованных дифференциальных уравнений.  [c.373]

Поэтому, если мы хотим, чтобы наши результаты были верны с точностью до какого-либо заданного порядка, то необходимо будет в дифференциальных уравнениях сохранить те периодические члены высших порядков, периоды которых весьма близки к какому-нибудь из периодов свободных колебаний.  [c.282]

Для нахождения достаточно хорошего первого приближения к движению может оказаться недостаточным взять решение дифференциальных уравнений, получающихся при отбрасывании всех членов высших порядков. Необходимо включить в эти дифференциальные уравнения все те малые члены высших порядков, которые существенно влияют на движение. Решение этих видоизмененных уравнений если оно может быть найдено) следует принять в качестве нашего первого приближения.  [c.283]

Здесь члены высших порядков могут быть определены из дифференциальных уравнений первого порядка, разрешимых непосредственно в квадратурах. Эти уравнения получаются в результате формальной подстановки (8.1.7) в (8.1.1) и приравнивания коэффициентов при степенях (а1 ) / 1.  [c.145]

Теорема 1. Если вещественные части всех корней характеристического уравнения системы (5.9) первого приближения отрицательны, то невозмущенное движение асимптотически устойчиво, каковы бы ни были члены высших порядков в дифференциальных уравнениях возмущенного движения.  [c.87]

Эти уравнения называются уравнениями движения материальной точки они представляют собой систему трех дифференциальных уравнений для трех неизвестных функций времени х(1), у(т), z(t). В математике уравнение называется дифференциальным, если в него наряду с неизвестной функцией входят также ее производные. Высший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения, и поскольку в формулы для сил не входят производные координат выше первого порядка (см. далее формулы (10.3), (10.10), (10.13), (10.14), (10.16)), то каждое из трех уравнений в (7.4) - второго порядка.  [c.29]

При исследовании малых колебаний около устойчивого равновесного состояния во многих случаях можно (не совершая большой погрешности) сохранять в выражениях, зависящих от координат и скоростей, только члены низшего (относительно этих величин) порядка, отбрасывая все другие как бесконечно малые высших порядков. Такая операция приводит обычно решение задачи о малых колебаниях к интегрированию линейных дифференциальных уравнений с постоянными коэффициентами. Она называется линеаризацией уравнений движения системы. Колебания, описываемые линеаризованными дифференциальными уравнениями, называются линейными колебаниями. Линеаризация уравнений малых колебаний может иногда оказаться результатом некоторых конструктивных изменений в рассматриваемой или проектируемой системе, что до известной степени служит основанием ее допустимости.  [c.69]

Основные работы В. Г. Имшенецкого охватывают вопросы интегрирования уравнений с частными производными первого и второго порядков, а также интегрирование линейных дифференциальных уравнений высших порядков с одним независимым переменным. Предложенный им метод отделения переменных для интегрирования уравнений с частными производными первого порядка имеет тем большее значение для аналитической механики, что доведение задачи до конца вне рамок применения этого метода является счастливой случайностью.  [c.346]

Бее наши предыдущие исследования касались систем дж )фереЕциаль-пых уравнений, в которые входят только производные первого порядка. Системы такого рода можно рассматривать как частный случай тех систем в которые входят производные люоого порядка. Но обратно, увеличением числа переменных можно привести систему с производными высшего порядка к системе, содержап1,ей только производные первого порядка, так что первая есть частный случай второй. Сначала мы будем заниматься этим приведением любой системы к другой, в которую входят производные только первого порядка. Пусть имеется система i дифференциальных уравнений с 1 переменными t, х, у, s, где t рассматривается как независимая, а х, у, Z,. как зависимые переменные. Пусть наивысший порядок производных, которые входят в эти дифференциальные уравнения, будет мг-ый для х, й-ый для у, -ый для Z и т. д. Предположим далее, что данные диф< №рен-циалъные уравнения можно решить относительно этих высших производных, так что они примут следующую форму  [c.104]


Отметим, что для двухлопастного винта параметрами управления углом установки являются общий шаг 6о = (0< ) + /2 и дифференциальный шаг 0i = (0 ) — 0(4)/2. Обычный автомат перекоса дает зависимость 0i = 0i os г]] + 0)s sin г з. Отметим также, что при увеличении числа лопастей периодические коэффициенты исчезают из уравнений для степеней свободы низши-х порядков, но всегда остаются в элементах матриц, соответствующих степеням свободы высших порядков.  [c.525]

Из сравнительного рассмотрения приведенных уравнений вытекает, что как порядок дифференциальных членов, так и степень, с которой они входят в годографические уравнения, всюду первые, в то время как в обычные уравнения входят как вторые производные, так и квадраты и произведения первых производных. Такое различие может оказать существенное влияние на трудность программирования, особенно когда речь идет о больших и сложных программах. Простота функциональных зависимостей в годографической записи достигается благодаря отказу от непосредственного использования пространства векторов положения. Все связи, налагаемые пространством векторов положения, удовлетворяются в векторном пространстве высшего порядка. Окончательный вид траектории в пространстве векторов положения всегда можно определить с помош,ью годографических преобразований. Для реализации этих преобразований на ЭВМ достаточно разработать стандартный алгоритм — тогда не нужно будет изменять программу для каждой новой траекторной задачи.  [c.67]

Работы Эйлера по продольному изгибу продолжил Лагранж. В первом мемуаре посвященном этому вопросу, Лагранж не ограничился исследованием наименьшей критической силы, а рассмотрел так называемые критические силы высших порядков, когда изгиб оси стержня происходит по двум, трем и большему числу полуволн синусоиды. Лагранж изучил зависимость стрелы прогиба от величины нагрузки в случае, когда последняя превышает критическое значение. Он нашел интеграл точного дифференциального уравнения изогнутой оси при помощи разложения искомого решения в ряд. Лагранж решил также задачу о продольном изгибе стержня, ограниченного какой угодно поверхностью вращения второго порядка. Тогда же он поставил задачу о наивыгоднейшем очертании колонн — об очертании стержня, выдерживающего без изгиба данную сжимающую нагрузку и имеющего наименьший вес. Однако ему не удалось найти удовлетворительного решения этой задачи. Впоследствии ею занимались Т. Клаусен, Е.Л. Николаи и др.  [c.168]

Основной результат метода Чепмена — Энскога заключается в возвращении к макроскопическому описанию Навье — Стокса — Фурье путем соответствующего разложения определенных решений уравнения Больцмана. Таким образом, можно ожидать, что теория Чепмена — Энскога гораздо точнее теории Гильберта. С другой стороны, рассматривая высшие приближения метода Чепмена — Энскога, мы получаем дифференциальные уравнения все более высокого порядка (так называемые барнеттовские и супербарнеттовские уравнения), относительно которых ничего неизвестно, нет даже должных граничных условий. Эти уравнения более высокого порядка никогда не имели заметного успеха в описании отклонений от механики газа как континуума. Более того, предварительный анализ проблемы граничных слоев, по-видимому, дает одинаковое число граничных условий для приближений любого порядка (см. следующий параграф), в то время как порядок производных увеличивается.  [c.130]

Из многочисленных эффектов, которые приходится изучать в связи с задачей о нестационарных кавернах, наиболее труден для математического исследования именно тот, который имеет, по-видимому, наиболее важное физическое значение и которому долгое время уделялось гораздо меньше внимания, чем следовало бы. Речь идет о замене модели несжимаемой жидкости моделью сжимаемой жидкости с известным объемным модулем упругости. Как мы уже отмечали, Рэлей не рассматривал эту задачу. Несколькими годами позже Херринг [14], решая задачу о подводном взрыве, исследовал случаи произвольного изменения давления внутри каверны и ввел поправку первого приближения на сжимаемость жидкости. Он рассмотрел жидкость с линейной зависимостью плотности от давления и использовал заимствованное из акустики допущение, что скорости в жидкости всегда малы по сравнению со скоростью звука. Затем он отбросил члены высших порядков в полученном нелинейном дифференциальном уравнении и использовал приближение первого порядка для рассмотрения условий на поверхности охлопывающейся каверны. Триллинг [49] также исследовал каверны, заполненные газом, и получил то же приближенное уравнение, но использовал его решение для полей скорости и давления, чтобы рассчитать условие схлопывания и повторного образования каверн. Оба автора не учитывали вязкость и поверхностное натяжение.  [c.141]

Дальнейшее исследование свойств подобных дифференциальных форм высших порядков и уравнений движения, выражающихся через них, бесспорно может привести к новым интересным фактам. Лагранж, Эйлер и все другие классики были бы весьма удивлены новым видом уравнений динамики. Но уже и сейчас можно утверждать, что новая форма уравнений динамики является основой дальнейшего развития механики неголономных систем самого общего вида. Если на базе обычных уравнений Лагранжа удается выводить все существующие типы уравнений движения неголономных механических систем только с неголономными связями первого. порядка и 1при этом линейными относительно обобщенных скоростей, то уравнения новой формы могут быть непосредственно применены и для вывода из них уравнений движения с неголономными связями любого вида, т. е. любого дифференциального порядка и любой структуры в смысле линейности или нелинейности уравнений связей относительно производных от обобщенных координат. Уравнения движения для систем с неголономными связями второго порядка были выведены в середине шестидесятых годов тем же И. Ценовым. Уравнения движения с множителями Лагранжа при нелинейных неголономных связях перво-  [c.11]

Принцип освобождаемости от связей в механике (заключающийся во введении в уравнения дополнительных слагаемых, называемых реакциями связей) распространяется на динамические системы, описываемые обыкновенными дифференциальными уравнениями при наличии ограничений на фазовые координаты. Составлено общее уравнение движения динамических систем с идеальными связями, частными случаями которых являются системы Н.Г. Четаева (см. п. 12.1) и системы с производными высших порядков [88]. Теория применяется при построении уравнений для медленных переменных в системах с малым параметром (не равным нулю). В качестве примера рассматривается автоколебательная система с инерционным возбуждением, к которой приводится динамическая система Лоренца (Е. N. Lorenz) [73.  [c.99]

Дифференциальные уравнения равновесия выводятся из рассмотрения равновесия бесконечно малого параллелепипеда размерами ах, ау, йг, выделенного из твердого тела, которое находится в условиях неоднородного напряженного состояния (рис. 22). Проектируя все силы, действующие по граням параллелепипеда, на декартовые координатные оси и пренебрегая бесконечно малыме величинами высшего порядка, получаем  [c.61]

При применении потенциала деформаций Ламе перемещения представляются первыми производными одной скалярной функции. Однако более общие решения, имеющие широкие приложения, можно получить, если ввести производные высшего порядка от векторной функции. В уравнениях Навье присутствуют два дифференциальных оператора второго порядка, не зависящих от направления координат. Это, видимо, навела Б. Г. Галёркина [15] ) на мысль представить общее решение в форме  [c.106]


Разрывные решения дифференциальных уравнений можно рассматривать как пределы непрерывных решений более точных уравнений высшего порядка при стремлении к нулю значений паразитных параметров, являю-ш ихся коэффициентами при высших производных. В случае релаксируюш ей среды в качестве паразитных  [c.94]

Подобным же образом, как и в только что приведенном примере, можно также показать [8], что суш ествует каноническая система дифференциальных уравнений с аналитической функцией Гамильтона Н, для которой вообще нет никаких сходящихся интегралов д(х, у), кроме самой Н и сходящихся степенных рядов относительно Н. В случае п = 2 для построения такой функции Н можно исходить опять из формул (18) и (19), но нри этом 1/q нужно заменить еще более быстро стремящейся к нулю функцией от q. Точнее, любую функцию Гамильтона с квадратичной частью i xiy + РХ2У2) произвольно малым изменением коэффициентов членов высших порядков можно превратить в такую, которая уже обладает указанным свойством, т. е. у которой отсутствуют другие сходящиеся интегралы. В связи с этим можно упомянуть теорему Пуанкаре [9]. В ней рассматриваются функции Гамильтона H z, 11), которые, кроме z, . .., Z2n, зависят еще от параметра , причем аналитически около точки = 0. Тогда теорема гласит, что при некоторых предположениях относительно H z, 0) и производной H z, 0), которые в общем случае вьшолнены, не существует других сходящихся степенных рядов по 2п + 1 переменным, . .., Z2n и /i, являющихся интегралами системы Гамильтона, соответствующей функции H(z, 11), кроме степенных рядов по самим Н ъ л. Однако в теореме Пуанкаре ничего не говорится о фиксированных значениях параметра jjL. Мы уже упоминали выше, что система Гамильтона в случае линейно независимых собственных значений Ai,. .., Л может приводиться к нормальной форме подстановкой, задаваемой расходящимся степенным рядом, если не существует п независимых сходящихся интегралов здесь мы построили такой пример. Теперь можно было бы думать, что множество чисто мнимых корней (f = 1,. .., гг), для которых преобразование в нормальную форму представлено расходящимися рядами, имеет п-мерную меру Лебега, равную нулю, как это было  [c.280]

Отметим, что для построения и исследования высших приближений ВКБ для уравнения (8.1) удобно использовать его связь с нелинейным дифференциальным уравнением Милна (см. работу [416] и указанную в ней литературу) и особенно связь с эквивалентным последнему линейным дифференциальным уравнением третьего порядка [239].  [c.165]

Это однопериодическое движение можно рассматривать как главное колебание. Однако второе главное колебание находится лишь тогда, когда предполагается, что Ф< 1, и соответственно это.му в уравнениях опускаются все члены высшего порядка (по переменным х и ф), начиная со второго порядка. Тогда сами переменные. v и ф оказываются главными координатами, так как в уравнениях движения (6.26) остаются лишь левые части, в каждую из которых входит только одна перемен ная. Хотя, таким образом, прн ф 1 дифференциальные уравнения формально становятся совершенно несвязан ными, все же возможно взаимное влияние обеих колебаний. В дан ном случае оно состоит в неустойчивости основного колебания (6.27).  [c.264]

Следуя Хёрту [1968], отбрасываем в уравнении (3.125) высшие производные и сохраняем первые и вторые производные по каждому независимому переменному (х и ). что дает полезное дифференциальное приближение. Оно имеет смысл по двум причинам. Во-первых, производные высших порядков обычно меньше. Во-вторых, а posteriori известно, что условие устойчивости, полученное в рехультате этого анализа, будет сильнее ограничения, накладываемого на шаг по времени при наличии только диффузионного члена, лишь для течений с малой вязкостью, т. е. для а <С и, когда коэффициенты при высших производных в уравнении (3.125) становятся малыми. В результате получается дифференциальное приближение  [c.76]

В предыдущих параграфах было показано, что метод растянутых координат является мощным средством для построения равномерно пригодных разложений в различных физических задачах. Однако, несмотря на успех при исследовании гиперболических дифференциальных уравнений для волн, распространяющихся в одном или в двух направлениях, этот метод не может быть применен для построения равномерно пригодных разложений эллиптических дифференциальных уравнений. Хотя Лайтхилл [1951] и получил равномерно пригодное разложение до второго порядка для обтекания несжимаемой жидкостью тонкого кругового крыла, Фокс [1953] нашла высшие приближения, которые не являются равномерно пригодными. Она доказала также, что для обтекания тонкого крыла сжимаемым газом не может быть получено равномерно пригодного разложения даже второго порядка. В связи с этим Лайтхилл [1961] в более поздней статье рекомендовал применять его метод только для гиперболических дифференциальных уравнений. Несмотря на это, Вальо-Лорен [1962] успешно применил этот метод в сочетании с методом интегральных соотношений в задаче о тупом теле (смешанная краевая задача). Более того, Эмануэль [1966] и Куйкен [1970] успешно применили этот метод к параболическим задачам, связанным с исследованием нестационарного турбулентного потока при диффузии и химических реакциях, а также потока вдоль наклонной поверхности, вызванного сильным впрыскиванием жидкости.  [c.113]


Смотреть страницы где упоминается термин Дифференциальные уравнения в высших порядков : [c.239]    [c.297]    [c.195]    [c.88]    [c.109]    [c.60]    [c.67]    [c.251]    [c.145]    [c.87]    [c.188]    [c.22]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.213 ]



ПОИСК



Дифференциальные высших порядков

Дифференциальные уравнения в обыкновенные высших порядков

Дифференциальные уравнения в полных высших порядков

Дифференциальные уравнения высших порядко понижение порядка

Порядок дифференциального уравнения

Пятнадцатая лекция. Множитель системы дифференциальных уравнений с производными высшего порядка. Применение к свободной системе материальных точек

Соображения о применении ЭВМ для замены дифференциального уравнения высокого порядка эквивалентным ему по переходному процессу нелинейным уравнением второго порядка



© 2025 Mash-xxl.info Реклама на сайте