Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения в полных высших порядков

Математическая модель с распределенными параметрами содержит переменные, зависящие от пространственных координат, и представляет собой систему дифференциальных уравнений в частных производных или систему интегро-дифференциальных уравнений. Важной характеристикой дифференциальных уравнений является их порядок, т. е. порядок старшей производной, которая входит в эти уравнения. Порядок производной по времени в большинстве динамических моделей процессов химической технологии — первый. Производные по координатам могут быть как первого, так и более высоких порядков. Модели обычно получаются в предположении о полном вытеснении (поршневом режиме течения) фаз. Производные второго порядка по координатам появляются в тех математических моделях, где учитывается перемешивание фаз.  [c.5]


Наоборот, другой предельный случай, при котором в уравнении (4.10) члены, зависящие от вязкости, значительно меньше инерционных члецов, имеет большое значение для практических приложений. Так как наиболее важные в техническом отношении жидкости — воздух и вода — обладают весьма малыми коэффициентами вязкости, то только что указанный предельный случай обычно имеет место при более или менее высоких скоростях. В этом предельном Случ ае число Рейнольдса очень велико (Ре->- оо). Однако вытекающая отсюда возможность математического упрощения дифференциального уравнения (4.10) требует весьма большой осторожности. Нельзя просто вычеркнуть члены, зависящие от вязкости, т. е. всю правую часть уравнения (4.10), так как это понизило бы порядок дифференциального уравнения с четвертого до второго и поэтому решения упрощенного дифференциального уравнения не могли бы удовлетворять граничным условиям полного дифференциального уравнения. Поставленный вопрос об упрощении уравнений Навье — Стокса в предельном случае очень большого числа Рейнольдса является одним из основных вопросов теории пограничного слоя.  [c.81]


Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.213 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.213 ]



ПОИСК



Дифференциальные высших порядков

Дифференциальные уравнения в высших порядков

Дифференциальные уравнения в полных

Порядок дифференциального уравнения

Уравнение полные высших порядков



© 2025 Mash-xxl.info Реклама на сайте