Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение видимости

Для определения видимости поверхности относительно плоскостей проекции используют конкурирующие точки или рассматривают взаимное расположение частей поверхности. Например, рассматривая поверхность конуса вращения (см. рис. 36, б), можно сказать, что относительно горизонтальной плоскости проекций видима вся поверхность конуса, а относительно фронтальной плоскости проекций видима только передняя половина поверхности (до контурных образующих), т. е. часть, где находится точка В.  [c.44]


Для определения видимости прямой и плоскости относительно плоскостей проекций используем две пары конкурирующих точек — 1, 3 к 4, 5.  [c.63]

Для определения видимости пересекающихся плоскостей относительно фронтальной плоскости проекций используем конкурирующие точки 1 и 5 (/ DF 5 АВ). Конкурирующие точки б и 7 (б АС 7 EF) позволяют, как это показано в п. 30.4(4), определить видимость плоскостей относительно горизонтальной плоскости проекций.  [c.66]

Определение видимости линии пересечения относительно плоскостей проекций. Заданные поверхности симметричны относительно фронтальной плоскости уровня Г, следовательно, симметрична и линия их пересечения относительно той же плоскости. Поэтому на плоскости проекций П- проекции видимой и невидимой частей линии пересечения совпадут (это будет кривая второго порядка —см. п. 36.5).  [c.76]

Определение видимости. Относительно горизонтальной плоскости проекций видима заданная половина сферы и коническая поверхность. Следовательно, видима и вся линия пересечения этих поверхностей.  [c.80]

Определение видимости. Относительно горизонтальной плоскости проекций вопрос о видимости линии пересечения отпадает, так как ее горизонтальная проекция совпадает с горизонтальной проекцией цилиндрической поверхности (одна окружность).  [c.82]

Определение видимости непрозрачных треугольников АВС и EFG на рис. 4.19 выполнено с помощью конкурирующих точек  [c.114]

Для определения видимости используе.м конкурирующие точки 3 - 4, у которых совпадают аксонометрические проекции 3 = 4, а на вторичной проекции ближе к наблюдателю точка 4 б l , следовательно,в аксонометрии видна прямая /. В точке М видимость изменится.  [c.79]

Для определения видимости на горизонтальной проекции использованы горизонтально конкурирующие точки 1е(АВ) и Зе/, у которых 11 = 31. Сравни-  [c.79]

Для определения видимости на фронтальной проекции использованы фронтально конкурирующие точки 4е (АС) и 5е/, у которых 4г = 5г, но глубина точки 5(5)) больше, она ближе к наблюдателю, и, следовательно, будет видна прямая / э 5.  [c.80]

Для определения видимости прямой на фронтальной проекции рассмотрим конкурирующие точки I и 3. Найдем горизонтальную проекцию 3 точки 3, принадлежащей прямой т, и сравним ее положение с положением точки Точка 3 находится дальше от наблюдателя, чем точка  [c.36]


При определении видимости прямой т относительно конической поверхности можно воспользоваться соответствующими парами конкурирующих точек. На черт. 227, в показаны точки, одна из которых (в), принадлежащая прямой т, явно закрывает собой на фронтальной проекции точку очерковой образующей поверхности.  [c.67]

Пары точек / и 2, лежащие на горизонтально проецирующей прямой, или 3 и 4, лежащие на фронтально проецирующей прямой, называют конкурирующими, а метод их использования для определения видимости элементов чертежа — методом конкурирующих точек.  [c.15]

Для определения видимости прямой линии т относительно плоскости а рассмотрены конкурирующие точки I и 3. Их фронтальные проекции совпадают, а гори-  [c.35]

При определении видимости прямой линии относительно плоскости, заданной следами, можно руководствоваться еще пем, что след плоскости всегда находится за (под) прямой линией, если последняя расположена в I четверти пространства.  [c.36]

Для определения видимости прямой относительно плоскости рассмотрены конкурирующие точки 1 ч 3, расположенные на горизонтальном следе и прямой т. Горизонтальные проекции точек совпадают, а фронтальная проекция точки 3 находится выше фронтальной проекции точки  [c.36]

При определении видимости прямой, пересекающейся с замкнутой поверхностью, может быть использовано правило, согласно которому точка пересечения, лежащая на видимой грани, делит прямую на видимую и невидимую части, а вблизи точки, лежащей на невидимой грани, прямая не видна по обеим сторонам от точки. Это правило хорошо иллюстрируется горизонтальной проекцией чертежа 146. Точка М2, лежащая на видимой грани VA , делит прямую т на видимую и невидимую части. Точка М лежит на невидимой сверху грани VB , вследствие ч го прямая около этой точки по обе ее стороны не видна.  [c.38]

Определение видимости линии пересечения поверхностей и их очерков. Чтобы линия пересечения поверхностей была видна, необходимо, чтобы она находилась на видимой стороне каждой из них.  [c.85]

Критерий видимости может быть применен для определения видимости элементов любых фигур.  [c.43]

Определение видимости линии пересечения производят отдельно для каждого участка, ограниченного точками видимости, при этом видимость всего участка совпадает с видимостью какой-нибудь случайной точки этого участка.  [c.176]

Последовательность соединения отдельных точек линии пересечения легко устанавливается по ее дополнительной проекции С1—С/—— 1 —О/—Р ——Я1 —С1. Определение видимости линии пересечения производится по ее отдельным участкам, заключенным между точками ви-  [c.187]

Для определения видимых участков прямой ВЕ анализируют положение точек на скрещивающихся прямых. Так, точки с проекциями 3, 3 и 2, 2 находятся на скрещивающихся прямых с проекциями с1 е, <1в и а Ь, аЬ соответственно. Их фронтальные проекции 2 и 3 совпадают. По горизонтальной проекции при взгляде по стрелке ТУ видно, что точка 3 находится перед точкой 2, т. е. она закрывает точку 2. Следовательно, прямая ВЕ слева от точки М расположена перед треугольником АВС. Поэтому фронтальная проекция й т ее показана как видимая. От точки М вправо прямую ВЕ закрывает треугольник АВС до точки 7, соответственно отрезок т Г показан как невидимый.  [c.44]

Для определения видимости на горизонтальной проекции использованы  [c.87]

Количественные результаты определения видимости интерференционной картины в схеме Юнга в зависимости от расстояния между щелями 8 и 8 позволят определить пространственную когерентность вдоль одного из диаметров поперечного сечения освещающего их светового пучка. Производя подобные же измерения при другой ориентации щелей 51 и 52 и раздвигая их вдоль другого диаметра светового пучка, можно выяснить пространственную когерентность вдоль другого диаметра пучка и т. д.  [c.85]

Чтобы обойти эту трудность, Эйнштейн предложил наблюдать звезду, которая будет находиться на малом угловом расстоянии от Солнца в момент полного солнечного затмения. В это время яркость солнечного света, попадающегося в телескоп, очень мала, и точное определение видимого положения звезды становится возможным. Другое положение той же звезды должно быть определено, когда эта звезда находится на большом угловом расстоянии от Солнца, и для этого наблюдения не требуется ждать солнечного затмения. Рассчитанное теоретически (ожидаемое) смещение положения звезды, вызванное искривлением луча в поле тяготения Солнца, оказывается очень малым — немного меньше двух угловых секунд. Измерить это смещение впервые удалось во время солнечного затмения 1919 г. смещение оказалось равным Г, 75 этот результат наблюдений находится в хорошем согласии с теоретически рассчитанной величиной.  [c.385]


Описанное выше расположение звёзд зависит от способов определения яркости. При определении видимой величины на глаз или с помощью предварительного фотографирования можно придти к различным выводам, так как человеческий глаз более чувствителен к красным и жёлтым лучам света, тогда как  [c.274]

Определение видимых и невидимых швов  [c.31]

Задача определения видимости является важной геометрической задачей, а также одной из основных задач машинной графики.  [c.11]

Определение видимости линий 8 fhl  [c.57]

Bf), определение видимости линий на каждом из 16 ,подсчет числа видимых линий, реализующих параметры К 1 .  [c.60]

По ГОСТ 2.305—68, п. 1.5, видом называется изображение обращенной к наблюдателю видимой части поверхности предмета. В этом определении имеются явные указания на использование, при выборе изображений, соответствий между изображением и оригиналом, а также на использование понятия видимости линий. Алгоритмы чтения чертежа и определения видимости линий известны. При описании алгоритмов выбора видов будем считать чтение чертежа и определение видимости стандартными операторами.  [c.192]

Удельный вес кожи характеризует степень утяжеления её минеральными или органическими веществами и, кроме того, служит косвенной характеристикой пористости кожи. Различают кажущийся и истинный удельный вес. Под истинным удельным весом кожи подразумевается вес кожи, отнесённый к объёму, занимаемому веществом кожи. Под кажущимся удельным весом, или просто удельным весом, понимают вес образца кожи, отнесённый к видимому его объёму, включая имеющиеся поры и пустоты. Определение видимого объёма кожи производят с помощью ртутного волюменометра. Для определения истинного объёма кожу погружают в жидкость (керосин или ксилол), способную заполнять поры и пустоты, не вызывая вымывания составных частей кожи и её набухания. Истинный удельный вес кожи значительно выше единицы, так как удельный вес голья равен 1,40—1,47, растительных дубящих 1,40—1,50, хромовых 5,0 ИТ. д. Кажущийся удельный вес колеблется от 0,40 для легких видов кожи до 1,20. для плотных и жёстких. Удельный вес кожи зависит также от её влажности.  [c.331]

Для определения видимости плоскостей при взаимном их пересечении следует вообще применять прием, указанный, например, при решении задачи 77. Рассмотрим точки 2 (лежит на прямой FG) и 5 (лежит на прямой АВ). Анализ положения 8ТИХ точек показывает, что на пл. V точка. 5 закрывает точку 2, а это значит, что прямая АЗ в этом месте проходит перед/ ( , т. е. треугольник AB виден до прямой КМ. Остальное ясно из чертежа.  [c.60]

К сверхполным изображениям можно отнести линейные пространственные системы, парадокс восприятия которых возникает от неправильного определения видимости, а также плоскостей , заданных четырьмя точками (рис. 3.5.51). Другую подгруппу сверхполных изображений составляют замкнутые пространственные структуры. Замыкание осуществляется только на плоскости изображения, в реальном про-  [c.146]

Для этого, во-первых, рассмотрена пара конкурирующих точек I и 2. Точка 1, лежащая на прямой т, расположена выше точки 2, принадлежащей плоскости а. Поэтому на горизонтальной проекции справа от точки М прямая будет видна. В точке М видимость изменяется, и слева от нее прямая т закрыта плоскостью. Во-вторых, для определения видимости на фронтальной проекции использовано положение, согласно которому видимость точки относительно остроугольной плоскости на горизонтальной и фронтальной проекциях одинакова. Плоскость на черт. 104 остроугольная , и точка J, видимая сверху, буде -видна и спереди. Следовательно, и на фронтальной проекц ин правая часть  [c.27]

Новым в решении этих задач является наряду с определением видимости кривых лчрчй определение видимости очерков заданных поверхностей.  [c.84]

Pii3BHTiie машинной графики связано не только с усовершенствованием технических средств, но и в неменьшей мере с разработкой алгоритмов геометрического проектирования, предназначенных для оперативного выполнения процедур и операций построения проекций, сечений, изометрических изображений, определения видимости линий и т. и.  [c.113]

Два отверстия Pj и Р2 в непрозрачном экране А также делят на два пучка световой поток, исходящий из щели S (см. рис. 6.48). Эти два пучка затем соединяются в точке Р, и в результате пространственной когерентности такой системы на экране В возникает интерференционная картина. Если для обеих установок апертура 2м интерференции одинакова, то для определения видимости интерференционной картины на экране В, получившейся при взаимодействии пучков света от отверстий Р] и Р2, можно воспользоваться формулой (5.35) для щелевого некогерентного источника света. Так как V = sinxA , где параметр X определялся отношением ширины щели 2а к ширине интерференционной полосы Л/ = kDi/d, то х = 2nadi /.Di) и видимость интерференционной картины  [c.309]

Т.к. А] еаь а плоскость обладает собирательным свойством, то Ае а. Но А[ Ь Пoti, следовательно Азе Ьг и А = bf)а, т.е. точка А является точкой пересечения прямой Ь и плоскости а. Для определения видимости на фронтальной проекции (рис. 80, б) возьмем фронтально конкурирующие точки Ва = Сг и посмотрим их горизонтальные Bi и i проекции. Т.к. точка В[ лежит перед точкой l (ув > Ус), то на фронтальной проекции будет видна точка В(В2), т.е. плоскость. В точке А видимость изменится.  [c.86]

Последнее действие общего алгоритма решения данного примера - определение видимости прямой а относительно поверхности закрьггого тора -осущесталяется с помощью конкурирующих точек, как и в предыдущем примере.  [c.87]

Построение точки , пересечения прямой I с плоскостью АВС (С = IXАВС) было показано на рис. 104. Для определения видимости прямой I в горизонтальной проекции рассмотрим точки  [c.79]

На рис. 1 показано дерево, отображающее структуру процесса распознавания необходимости разреза на техническом чертеже. Исходными являются виды технического чертежа некоторого предмета, результатом — суждение о необходимости либо ненужности разреза. Рассматривая дерево рис. 1, отметим, что при переходе от уровня к уровню наблюдается быстрый рост количества частей процесса, которые представляют собой легкоформали-зуемые агрегаты (напомним, что алгоритмы восстановления пространственного образа и определения видимости линий чертежа известны, например [59] и т. д.). Это же дерево демонстрирует большую сложность задач, связанных с инженерной графикой и начертательной геометрией. В ряде случаев процесс структуризации удается выполнить на уровне интроспекции. Процесс моделирования может быть закончен либо продолжен на другом уровне с целью оценки оптимальности решения, его устойчивости и т. п.  [c.6]


При формировании дополнительного вида происходит определение видимости проецируемых ребер. Появление невидимых на дополнительном виде ребер влечет за собой формирование массива NEVID со всеми вытекающими из этого факта последствиями. Выбор и формирование разрезов на дополнительных видах аналогичны изложенным процессам, применяемым для основных видов. При формировании  [c.204]


Смотреть страницы где упоминается термин Определение видимости : [c.129]    [c.78]    [c.45]    [c.50]    [c.71]    [c.36]   
Смотреть главы в:

Курс начертательной геометрии  -> Определение видимости



ПОИСК



1— видимое

Видимость

Применение интегрального уравнения теории рассеяния света в атмосфере к определению полетной видимости (совм. с Е.М. Фейгельсоном)



© 2025 Mash-xxl.info Реклама на сайте