Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конечно-разностный метод решения задачи

КОНЕЧНО-РАЗНОСТНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ  [c.69]

КОНЕЧНО-РАЗНОСТНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ КОНВЕКТИВНОГО ТЕПЛООБМЕНА  [c.156]

В связи с интенсивным развитием вычислительной техники в последнее время получил большое распространение конечно-разностный метод решения задач нестационарной теплопроводности, или метод сеток. Методом конечных разностей может быть решена практически любая задача теплопроводности с произвольными начальными и фаничными условиями и переменными физическими параметрами тела.  [c.115]


Конечно-разностный метод решения задачи  [c.194]

В работе [19] проанализированы ошибки различных конечно-разностных методов решения задачи о распространении ударных волн в трубе, заполненной газом. Рекомендуется решение указанной задачи с помощью комбинированной схемы, состоящей из двухшаговой схемы Лакса — Вендроффа и метода коррекции потоков. Такой вывод согласуется с широко известными фактами высокой точности двухшагового метода Лакса — Вендроффа при изучении широкого класса нестационарных течений жидкости [172] и метода коррекции потоков при расчете ударных волн [28].  [c.144]

Систему (8.55) удобнее всего решать конечно-разностным методом как задачу Коши, на кажд м шаге отыскивая решение нелинейной алгебраической системы четырех уравнений (начальные условия — нулевые- при t — О и — v — О).  [c.468]

За начальное условие обычно принимается равномерное движение воды с расходом Qo перед паводком. Эта система уравнений совместно с начальными и граничными условиями (11.5) образуют краевую задачу, решение которой можно получить либо в аналитическом виде, либо численными методами. Наибольшее распространение получили конечно-разностные методы решения.  [c.284]

Для решения пространственных задач аэрогидродинамики удобно пользоваться разработанными конечно-разностными методами В главах III—VI излагаются конкретные примеры конечно-разностных методов решения пространственных задач аэрогидродинамики, обсуждаются вопросы аппроксимации, устойчивости, сходимости и реализации алгоритмов.  [c.4]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]

Четвертое направление объединяет работы, в которых используются различные приближенные методы. Их можно разделить на пять групп. В первую входят исследования с применением конечно-разностных методов в их различной трактовке. Так, например, в [4, 31, 33, 145, 169, 171, 182, 235] исходные дифференциальные уравнения заменяются разностными с последующим решением полученной системы алгебраических уравнений на -ЭЦВМ. В ряде случаев целесообразно предварительно свести задачу к обыкновенному дифференциальному уравнению, которое затем решается численно [53, 57]. Возможно также использование методов конечных элементов [133] и коллокаций [8, 104, 105]. Здесь необходимо отметить, что, кроме изучения сходимости этих методов, следует иметь в виду устойчивость вычислительного процесса [6]. Как показывают последние исследования, это условие является весьма существенным при реализации численных методов на ЭЦВМ.  [c.42]


Различны и методы решения линейных краевых задач теории оболочек [5]. Сложность исходной системы уравнений (8.3) делает в этой связи предпочтительным применение конечно-разностного метода.  [c.158]

В соответствии с общим методом решения задачи для колонки строится конечно-разностная расчетная схема. Для увязки с расчетной схемой массива горных пород в сопротивление стенок замораживающей трубы вводится цилиндрический слой породы малой толщины (прилегающий слой породы).  [c.396]

В задачах устойчивости оболочек применение этих методов сдерживалось высоким порядком систем алгебраических уравнений, что обусловливается значительной изменяемостью функций, описывающих как исходное, так и нейтральное состояние. Возможности эффективного применения конечно-разностных методов появились в последние годы в связи с внедрением в практику исследований ЭВМ. Эти методы обладают несомненным достоинством по сравнению с другими методами. Они позволяют стандартным образом решать задачи устойчивости при различных граничных условиях, различных нагрузках, в том числе полосовых и локальных. При этом не возникает затруднений и с учетом действительного характера докритического состояния. Ниже дается изложение одного эффективного алгоритма решения задач конечно-разностным методом [6.13]. Этот алгоритм основан на представлении дифференциальных уравнений устойчивости в матричной форме и решении алгебраических разностных уравнений матричным методом исключения по Гауссу. Алгоритм приводит к простым рекуррентным зависимостям, позволяющим стандартно и с большой точностью решать широкий круг задач устойчивости оболочек при осесимметричной нагрузке.  [c.88]

Действительное распределение напряжений в деталях и элементах сложной конфигурации находят методами теории упругости [36] или экспериментально (методами тензометрирования, поляризационно-оптическим [90] и др.). В последнее время для этой цели широко применяют численные методы решения задач теории упругости (и пластичности) на ЭВМ (метод конечных элементов, вариационно-разностные методы и др.).  [c.49]

Отметим, что математические трудности решения задач устойчивости оболочек при неоднородных состояниях делают наиболее целесообразным применение численных методов, в частности, конечно-разностного метода, метода конечных элементов или метода локальных вариаций.  [c.200]

Примененный конечно-разностный метод удобен также для численного решения задачи о развитии криволинейных трещин условия (4.70) и (4.72) играют в этих задачах роль дополнительного граничного условия на контуре гладкой трещины нормального разрыва.  [c.157]

Численное решение этой упруго-пластической задачи для квазихрупкого тела конечно-разностным методом с применением деформационной теории пластичности показало, что  [c.164]

Более устойчивыми при решении краевых задач эллиптического типа оказываются (см. [283 ]) конечно-разностные методы. Однако и их применение в задачах неклассической теории оболочек встречает затруднение удовлетворительная аппроксимация производных быстропеременных решений конечными разностями требует малого шага сетки, что приводит к системам алгебраических уравнений высокой размерности. Наконец, обращаясь к методам третьей группы, приведем выразительную характеристику, данную им авторами монографии [36, с. 255] ... успешное или неудачное применение указанного выше метода. .. сильно зависит от выбора координатных функций. Скорость сходимости и практическая осуществимость соответствующих численных расчетов обусловлены главным образом этим выбором . Данную точку зрения разделяют и авторы монографии [283, с. 255] Метод разложения иногда приводит к серьезным неудачам, а иногда к блестящим успехам. В будущем он может оказаться вполне эффективным .  [c.110]


Подавляющему большинству практических задач, возникающих в инженерном деле и прикладных науках, присуща чрезвычайная нерегулярность границ областей, отвечающих изучаемым объектам, так что при их количественном исследовании трудно рассчитывать на получение аналитических результатов и решения, как правило, приходится так или иначе искать численно. Наиболее распространенные численные методы основываются на достаточно мелком подразделении изучаемой области либо путем введения линейных сеток с неизвестными значениями переменных в узлах, как в конечно-разностных методах, либо путем разбиения области на большое число дискретных элементов простой структуры, как в методах конечных элементов.  [c.9]

Доказанная теорема совместно с конечно-разностным методом, описанным на с. 39, дает эффективный метод решения задач нестационарного движения. Для нахождения минимума  [c.46]

Первый относится к построению решения задачи для области, в которой имеются зоны больших градиентов искомых функций. В этом случае, как предлагается в [24], можно сначала строить решение на грубой сетке конечно-разностными Методами. Это решение будет иметь удовлетворительную точность вне зон больших градиентов. В последних решение будет перестраиваться методом ГИУ, что может оказаться выгоднее и проще, нежели использование специальной техники в конечно-разностных методах, позволяющей уточнять решения та л, где градиенты велики.  [c.192]

Второй путь связан с решением конечно-разностными методами задач для бесконечных областей. В этом случае имеется трудность в том, где ограничить сеточную область и какие условия задать на ее внешней границе Г. Для этой цели можно использовать метод ГИУ рассмотреть область, внешнюю по отношению к Г, и записать ГИУ по Г. Это ГИУ и Можно принять в качестве точного граничного условия на внешней границе сеточной области. Подобная процедура реализована в [45, 46].  [c.192]

Для анализа распространения и остановки трещин широко применяются конечно-разностные методы и метод конечных элементов. Здесь наблюдается тенденция к использованию численных методов и ЭВМ не только для решения сложной краевой задачи, но и с целью моделирования процесса микроразрушения в области, примыкающей к концу трещины, и установления таким путем особенностей развития макроразрушения. Эти исследования представляются многообещающими.  [c.7]

В монографии излагаются современные подходы к конечно-разностным методам решения задач аэрогидродинамики, обсуждаются вопросы аппроксимации, устойчивости и сходимости. Численное моделирование проводится в рамках различных математических постановок и приближений. Рассматриваются основные закономерности трёхмерных отрывных течений жидкоеги и газа. Уделено внимание приближенным методам расчета задач и физическим особенностям пространственных течений.  [c.2]

В численных конечно-разностных методах дифференциальная задача заменяется или, как говорят, аппроксимируется системой разностных уравнений. Совокупность разностных уравнений и краевых условий, записанных в разностной форме, называется разностной схемой ). Методы решения системы разностных уравнений, возникаюхцей при записи разностных операторов для всех точек сетки, представляют самостоятельную проблему.  [c.268]

Энергетические методы широко применяют в задачах статики и динамики тонкостенных конструкций. Наиболее распространенным из них является метод Релея — Ритца, предусматривающий представление решения в виде ряда по координатным функциям. Выбор метода решения задачи — интегрирование дифференциального уравнения (классическими методам и или методом Галер-кина) или применение энергетического метода — часто связан с определенными трудностями. Можно показать, что при условии корректного применения метода Галеркина к системе дифференциальных уравнений [22], он в математическом отношении эквивалентен методу Релея — Ритца [133]. Однако, если имеется только дифференциальное уравнение, то следует применять метод Галеркина или другие методы его решения, а если имеется только выражение, определяющее энергию системы, следует отдать предпочтение энергетическим методам. Эти соображения не помогают выбрать метод решения задач, которые сформулированы как в дифференциальной, так и в энергетической постановке. Он определяется в этих случаях предшествующими расчетами, а также наличием программ решения задач на собственные значения (для устойчивости и колебаний) для вычислительных машин. Традиционно энергетические методы получили наибольшее распространение в США и Германии, в Англии отдавалось предпочтение конечно-разностным методам решения дифференциальных уравнений, а в СССР — методу Галеркина.  [c.179]

Наличие градиента давления во внешнем потоке, а значит, и в пограничном слое, значительно усложняет задачу расчета последнего. Но ввиду практической значимости вопроса он привлекает внимание многих исследователей, и в настоящее время разработаны разнообразные методы решения, опирающиеся на приближенные допущения и эмпирические зависимости. В последние годы получили развитие численные методы решения дифференциальных уравнений (9.3), которые дополняются выражениями турбулентных напряжений согласно одной из полуэм-пирических теорий. Для приведения полученной таким путем системы уравнений к виду, удобному для численного решения, используют безразмерные переменные. При этом в некоторых методах применяют специальные преобразования координат для создания более равномерного распределения параметров потока по толщине в принятых переменных формулируют граничные условия и систему решают на ЭВМ одним из конечно-разностных методов (например, методом сеток или прямых).  [c.374]


Численные методы решения, которые находят все большее применение в связи с развитием и широким использованием вычислительной техники. По отношению к рассматриваемой системе дифференциальных уравнений наиболее универсальными являются конечно-разностные методы, в соответствии с которыми дифференциальные уравнения заменяются уравнениями в конечных разностях. Область, в которой производится расчет температурного поля (область О, см. 39), представляется множеством отдельных точек (сеткой) с заданным шагом по осям Ох и Оу. Для каждой такой точки уравнения в конечных разностях образуют систему аглебраиче-ских уравнений, в которые входят и значения искомых функций в соседних точках. В результате решения алгебраических уравнений получают значения искомых функций в узлах сетки, например, таблицу значений температуры в рассматриваемой области О. Важно, чтобы разностная схема задачи была устойчивой — при измельчении шага сетки последовательно получаемые таблицы решений должны сходиться к точному решению задачи (т. е. образовывать сходящуюся последовательность). При применении численных методов значительно расширяется круг решаемых задач конвективного теплообмена и появляется возможность осуществления  [c.327]

Турбулентная структура потока рассчитьшалась по формуле Рейхардта для учета переменности свойств безразмерное расстояние от стенки т = V /32 Reg определялось по значениям р и д при Т .. Расчет обеспечивал сходимость найденной интегрированием среднемассовой энтальпии, полученной решением одномерного уравнения энерх ии. Было показано, что из-за высокой температуропроводности газа влияние нестационарной теплопроводности незначительно и существенно меньше, чем по экспериментальным данным (рис. 1.3). Аналогичные результаты дало численное решение данной задачи конечно-разностным методом при R n = 10 . ...3 10 , выполненное на БЭСМ-6. Для жидкостей из-за более низкой температуропроводности этот эффект более значителен, однако экспериментальные данные также расходятся с результатами расчета (рис. 1.4) [24].  [c.31]

Решение нестащюнарной задачи конечно-разностными методами сеток, конечных элементов и тд. [28, 77] при значительной неопределенности теплофизических свойств изоляции, грунта и воздуха в канале не отвечает требованиям к моделированию.  [c.118]

Конечно-разностные методы основаны на замене дифференциальных уравнений их дискретными аналогами, представляющими собой алгебраические уравнения, связывающие значения искомой функции в некоторой группе узловых точек. Система алгебраических уравнений в дпскретргой форме отображает непрерывную информацию, содержащуюся в решении исходной системы дифференциальных уравнений, которая для широкого спектра стационарных прикладных задач данного класса имеет 1зид  [c.184]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Некоторые методы решения задач термовязкоупругости рассматривались в [39, 49, 11, 99], где можно найти и дополнительную библио-трафию. Наиболее при решении связанных динамических зада.4 термовязкоупругости представляется применение численных методов, основанных на конечно-разностной и конечноэлементной аппроксимации системы основных соотношений.  [c.188]

Результаты применения конечно-разностных методов для решения двумерных задач о динамическом росте трещины опубликованы Шмюли с соавторами (резюме этой работы см. в [82]), Стоклом и Ауэром [85], Эндрюсом [8,9], Дасом и Аки [29] и Бюргерсом [22]. В этих исследованиях материал считался ли-нсйно-упругим, а уравнения движения в перемещениях записывались в конечно-разностной форме. Типичными были разностные схемы второго порядка точности по пространственным пере-  [c.119]

Численное решение этой упруго-пластической задачи конечно-разностным методом показало, что уравнение контура L, разделяющего упругую и пласти1 ескую области, можно записать приближенно в следующем виде  [c.163]

Уравнение распространения (2.3.35)-нелинейное дифференциальное уравнение с частными производными, которое, вообще говоря, нельзя решить аналитически, за исключением некоторых частных случаев, когда для решения применим метод обратной задачи рассеяния [27]. Поэтому часто для изучения нелинейных эффектов в световодах необходимо численное моделирование. Для этой цели можно использовать множество численных методов [31-38], которые можно отнести к одному из двух классов 1) разностные методы и 2) псевдоспектральные методы. Вообще говоря, псевдоспектральные методы на порядок или даже более быстрее при той же точности счета [39]. Одним из наиболее широко используемых методов решения задачи распространения импульсов в нелинейной среде с дисперсией является фурье-метод расщепления по физическим факторам (SSFM) [33, 34]. Относительно большая скорость счета этим методом по сравнению с большинством методов конечных разностей достигается благодаря использованию алгоритма быстрого фурье-преобра-зования [40]. В этом разделе кратко описывается фурье-метод с расщеплением по физическим факторам, а также его применение для задачи распространения импульсов в волоконном световоде.  [c.49]


Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

Третий и четвертый примеры этого раздела являются аналогичными оба они связаны с течением под основанием плотины в неоднородных пластах из зонально-анизотропного материала. На рис. 3.16 и 3.17 показаны распределения потенциала и направления линий тока, полученные непрямым МГЭ для сравнения здесь же пунктиром изображены эквипотенциали, получаемые с помощью конечно-разностного метода Томлина для треугольной сетки. Снова типичные расхождения между двумя решениями оказываются порядка 1% полного перепада напора на плотине и возрастают при-мерно.до 4% вблизи особых точек, находящихся в углах основания плотины и в концах шпунтов. Из всех рассмотренных нами решений двумерных задач о потенциальных течениях, полученных с помощью МГЭ, последние являются наиболее нетривиальными, тем  [c.94]

Сложность системы разрешающих уравнений теории оболочек исключает возможность ее аналитического решения. Поэтому задачу решали конечно-разностным методом на ЭВМ B3 iM,-6. Число разност-  [c.97]

На каждом шаге процесса, описанного в 4.1, решение краевой задачи выполняли конечно-разностным методом на ЭВМ БЭСМ-6. Ввиду симметрии рассматривали часть меридиана оболочки, заключенную между полюсом и опорным контуром.  [c.155]


Смотреть страницы где упоминается термин Конечно-разностный метод решения задачи : [c.5]    [c.388]    [c.146]    [c.153]    [c.235]    [c.254]    [c.109]   
Смотреть главы в:

Асимптотическая теория сверхзвуковых течений вязкого газа  -> Конечно-разностный метод решения задачи



ПОИСК



Задача и метод

Задачи и методы их решения

Конечно-разностные методы решения задач конвективного теплообмена

Конечно-разностные методы решения задач теплопроводности

Конечно-разностный метод

Разностная задача

Разностный метод

Решение конечно-разностное

Решения метод

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте