Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другой вывод уравнений Лагранжа

ДРУГОЙ вывод УРАВНЕНИЙ ЛАГРАНЖА  [c.266]

Другой вывод уравнений Лагранжа 267  [c.267]

Другой вывод уравнений Лагранжа основан на преобразовании левых частей уравнений (6.3.7). Вспомнив многократно использованное соотношение (1.3.5), имеем  [c.284]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]


Сопоставляя уравнения (28.11) и (28.19), можно сделать вывод форма уравнений Лагранжа не зависит от выбора обобщенных координат механической системы другими словами, уравнения Лагранжа инвариантны относительно точечных преобразований (28.17).  [c.164]

Вывод уравнений Лагранжа из принципа Гамильтона. Мы получили уравнения Лагранжа путем формального преобразования системы (2). Но те же уравнения можно получить другим, более простым и общим способом при помощи так называемого принципа Гамильтона, объединяющего в простой и изящной форме все основные законы динамики.  [c.384]

В следующей главе на примере сферического маятника мы убедимся, что величины Л можно толковать как реакции системы на воздействие (голономных и неголономных) связей . Там же мы увидим также, что фактическое определение величин Л должно производиться, исходя не из г произвольно выделенных уравнений, как это мы временно сделали при выводе уравнения (12.6), а из совокупности всех Зп уравнений Лагранжа. Нужно подчеркнуть, что метод лагранжевых множителей играет существенную роль не только для уравнений Лагранжа первого рода, но также и для уравнения значительно более общего типа (ср. гл. VI, 34) с другой стороны, этот метод встречается уже в элементарной теории максимумов и минимумов.  [c.95]

Отметим также некоторые другие обстоятельства изучения движения релятивистских частиц методами теоретической механики. Ограничение скорости релятивистской частицы не позволяет считать её свободной по определению ограничение величины скорости представляет собой неголономную связь в пространстве-времени (другое дело, что пока не вполне ясно, как она реализуется). Известно, что при выводе уравнений движения условие неголономной связи не должно быть использовано в функции Лагранжа, как это было сделано в (15). Эта связь неидеальная в уравнении движения релятивистской частицы [78] в составе сил имеется слагаемое, противоположное скорости.  [c.263]

Уравнения гидродинамики в форме Лагранжа отличаются от уравнений в форме Эйлера. Для того чтобы проиллюстрировать технику перехода от одних координат к другим, рассмотрим вывод уравнений неразрывности и движения.  [c.128]

При выводе дифференциального уравнения неразрывности рассматривалось движение отдельной жидкой частицы такой метод исследования ввел в гидродинамику Лагранж. В другом методе исследования, развитом впервые Эйлером, рассматривается не поведение отдельных частиц, а изменение по времени параметров жидкости в фиксированных точках пространства метод Эйлера во многих случаях удобнее метода Лагранжа — и в гидродинамике, и в газовой динамике им пользуются чаще.  [c.62]


Это — формулировка принципа Гамильтона. В нащем изложении этот результат является в конечном счете следствием законов Ньютона. Другая точка зрения состоит в том, чтобы рассматривать его как исходный принцип, и в этом случае уравнения движения Лагранжа и остальные законы механики выводятся из него.  [c.74]

Ж. Лагранж в трактате Аналитическая механика справедливо отмечает, что принцип равенства давлений по всем направлениям... является 1771 основой равновесия жидкостей . Однако сам Лагранж предпринял попытку вывода всех свойств жидкости в состоянии равновесия непосредственно из самой природы жидкостей, рассматривая последние как собрание молекул, сильно разобщенных, независимых друг от друга и способных совершенно свободно двигаться во всех направлениях . Лагранж предпринял новую систематизацию материала гидростатики. Он стремился все закономерности механики вывести чисто математически из единого принципа. Этим единым принципом всей механики Лагранжа была так называемая общая формула динамики (теперь называемая уравнением Даламбера — Лагранжа). В частном случае равновесия системы эта формула переходила в общую формулу статики (принцип возможных перемещений).  [c.177]

Преимущества метода. Изложим теперь метод Лагранжа составления уравнений движения. Этот метод имеет ряд преимуществ. Он приводит к уравнениям движения, не содержащим реакций, н поэтому особенно удобен для исследования движений нескольких тел, соединенных между собой. Он также дает нам большой выбор величин, которые можно принять в качестве координат. Кроме того, как только составлена функция Лагранжа, из этой одной функции можно вывести все уравнения движения вместо того, чтобы выводить каждое из них из отдельных общих теорем механики. С другой стороны, эта функция при исследовании малых колебаний должна быть вычислена с точностью до квадратов малых величин, ибо в этом случае в уравнениях движения удерживаются только первые степени малых величин. Поэтому, когда число уравнений движения невелико, часто более удобно получать их в результате разложения сил и вычисления моментов.  [c.397]

Непосредственно эти уравнения для исследований употребляются очень редко. В общем случае необходимо заменить абсолютные координаты уи 2 другими переменными, например, 41 9г. 9ап. при помощи соотношений, в которые может входить и время. Прямой вывод дифференциальных уравнений для новых переменных сложен, но эта вычислительная работа значительно упрощается благодаря найденной Лагранжем общей форме уравнений движения.  [c.38]

Этот вывод основного уравнения для волн с гребнями любых направлений настолько поразительно прост, что может показаться желательным проверить его каким-либо другим методом. Чтобы сделать это, предположим, что в покоящейся жидкости волна частоты со с волновым числом к имеет плотность лагранжиана 2 ( ), ku kz), и рассмотрим систему волн, устанавливающуюся под действием стационарного вынуждающего воздействия, движущегося по жидкости со скоростью (— и,0). Такая система должна иметь фазовую функцию вида  [c.52]

Принцип Гамильтона можно распространить и на неголо-номные системы. При выводе уравнений Лагранжа из принципа Гамильтона или из принципа Даламбера мы использовали требование голономности связей только на последнем этапе, когда считали вариации 6qj независимыми. В случае неголономной системы ее обобщенные координаты не являются независимыми и не могут быть связаны друг с другом уравнениями связи вида f(q,, q2,. .., qn, t) — Q. Однако рассмотрение неголономных систем оказывается возможным, если уравнения их связей можно представить в виде  [c.53]

В 1.1 кратко обрисован обгций подход построения дискретных моделей несжимаемой жидкости из нринцина Гамильтона. Он сводится к аппроксимации исходного континуума дискретной системой частиц, на движение которых накладываются голо-номные ограничения, обеснечиваюгцие несжимаемость среды. Отсюда стандартным образом выводятся уравнения Лагранжа. При этом различные дискретные модели в рамках такого подхода отличаются друг от друга заданием конкретного вида условий несжимаемости и гравитационного потенциала. Далее приводятся примеры дискретизаций и коротко обсуждается проблема выбора дискретных условий несжимаемости.  [c.10]


Если каждое слагаемое в правой части равенства, обращаешя в пуль, то выражение в левой части также должно равняться нулю. (См. замечание в конце этого тома о выводе уравнений Лагранжа.) Другой вывод, основанный на применении вариационного исчисления, дан в п. 460, т. II этой книги. Теорема может быть обобщена на случай, когда , помимо аргументов 0, 0 ф, ф, . ., содержит также 0", 0 ",. .., ф", ср ",. .. Обозначим оператор  [c.341]

Принцип Гамильтона. Выводя в предыдущей главе уравнения Лагранжа, мы рассматривали мгновенное состояние системы и небольшие виртуальные изменения этого состояния Таким образом, мы исходили из дифференциального принципа каким является принцип Даламбера. Однако уравнения Лаг ранжа можно получить и из другого принципа, в котором рас сматривается движение системы за конечный промежуток вре мени и небольшие виртуальные изменения движения в этом промежутке. Принципы такого рода известны как интегральные принципы .  [c.42]

Видоизменение принципа Даламбера для систем е неинте-грируемыми связями. Непосредственное применение принципа Даламбера к выводу уравнений движения систем с неинтегрируемыми связями представляет то неудобство, что в состав аналитического выражения принципа входят дифференциальные выражения второго порядка, а это иногда значительно затрудняет переход от одних переменных к другим. С другой стороны, интегральные принципы, а именно, принципы Гамильтона, Лагранжа, Гельмгольца, хотя и содержат выражения первого порядка, но они несправедлявы для систем с неинтегрируемыми связями. Между тем, если равенство, выражающее принцип Даламбера, подвергнуть одному, почти очевидному, преобразованию, то мы получим формулу, весьма удобную для приложений, содержащую выражения первого порядка и по внешнему виду аналогичную формуле для вариации гамильтонова действия.  [c.596]

Уравнения (2.308) называются уравненияма Лагранжа второго рода или чаще просто уравнениями Лаграноюа. Поскольку вывод соотношений (2.308) не зависит от выбора координат, то, переходя от одних обобщенных координат к другим <7ь мы придем к уравнениям Лагранжа вида  [c.52]

В гл. II мы многократно выводили дифференциальные уравнения для амплитуды а и фазы г ) (амплитудно-фазовые уравнения) колебательных систем при использовании метода усреднения. Здесь изложим другой алгоритм построения амплитудно-фазовых уравнений первого приближения (вида (2.144)), не требующий предварительного написания возмущенных уравнений вида (2.133). Этот алгоритм основан на применении так называемого энергетического метода [147], хорошо известного в уравнениях математической физики. Для построения уравнений первого приближения достаточно знать некоторое выражение для работы возмущающих сил, а не сами силы, входящие в уравнения Лагранжа второго рода (2.128) или (2.133),.В ряде случаев это существенно упрощает задачу. Чтобы не загромождать суть дела большим количеством громоздких формул и выкладок, вернемся к задаче (см. 2.9) о построении приближенных решений системы (2.133), близких к одночастотпым колебаниям с медленно изменяющейся частотой (оДт).  [c.171]

Не подлежит сомнению, что уравнение поперечных колебаний пластинки тоже получено Лагранжем. В этом вопросе имена Эйлера и Лагранжа снова связаны. В уже упоминавшемся X томе Novi ommentarii (1766 г.) Эйлер поместил мемуар О звучании колоколов . Для вывода уравнений Эйлер представляет себе колокол разделенным горизонтальными сечениями на кольца каждое кольцо делится вертикальными сечениями на нечто вроде пластинок. Кольца и пластинки рассматриваются как двумерные тела, которые колеблются независимо одно от другого. Последнее допущение приводит к ошибочному уравнению колебаний вида  [c.270]

Дальнейшее исследование свойств подобных дифференциальных форм высших порядков и уравнений движения, выражающихся через них, бесспорно может привести к новым интересным фактам. Лагранж, Эйлер и все другие классики были бы весьма удивлены новым видом уравнений динамики. Но уже и сейчас можно утверждать, что новая форма уравнений динамики является основой дальнейшего развития механики неголономных систем самого общего вида. Если на базе обычных уравнений Лагранжа удается выводить все существующие типы уравнений движения неголономных механических систем только с неголономными связями первого. порядка и 1при этом линейными относительно обобщенных скоростей, то уравнения новой формы могут быть непосредственно применены и для вывода из них уравнений движения с неголономными связями любого вида, т. е. любого дифференциального порядка и любой структуры в смысле линейности или нелинейности уравнений связей относительно производных от обобщенных координат. Уравнения движения для систем с неголономными связями второго порядка были выведены в середине шестидесятых годов тем же И. Ценовым. Уравнения движения с множителями Лагранжа при нелинейных неголономных связях перво-  [c.11]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]


Другой метод вывода уравнения неразрывности. Предыдущий вывод уравнения неразрывности в переменных Эйлера представляет в сущности перефразировку вывода в переменных Лагранжа, так как мы рассматривали изменеиия плотности и объема в некоторой части жидкости, состоящей из одних и тех же частиц, следуя за ней при ее движении. Можно получить уравнение неразрывности в переменных Эйлера и другим методом, оставаясь строго на точке зрения Эйлера. Для этого достаточно рассмотреть поток вектора рг сквозь некоторую неподвижную замкнутую поверхность 5 произвольной формы. Этот поток, на основании теоремы Гаусса, может быть представлен объемным интегралом  [c.25]

Принцип виртуальных перемещений получился у нас как следствие уравнений движения (36.4). Раньше, в 198, мы уже упоминали о том, что можно итти обратным путём — вывести из принщша виртуальных перемещений принцип Даламбера, а уж отсюда притти к уравнениям движения (36.4). Но при таком построении динамики надо или считать принцип виртуальных перемещений за основное положение, или доказать этот принцип, исходя из какого-либо другого положения, принимаемого за основное. Было сделано много попыток дать вполне строгое доказательство принципа виртуальных перемещений, но подобно тому, как при установлении уравнений (36.20) (т. е. точнее говоря, при выводе выражений для реакций) нельзя обойтись без некоторого основного определения или условия (о реакциях идеальных связей), точно так же всякое доказательство рассматриваемого принципа скрыто или явно заключает в себе подобное же условие или допущение по отношению к связям специального характера, а потому, строго говоря, доказательством, т. е. сведением лишь на раньше признанные истины, названо быть не может. Для примера мы рассмотрим в общих чертах ещё два доказательства принципа виртуальных перемещений доказательства Лагранжа и Ампера (Ampere).  [c.380]

Лагранж дал свой общий метод интегрирования уравнений в частных производных первого порядка, являющийся совершенно новой мыслью в иптв,-гральном исчислении, в одной статье, помещенной в трудах берлинской академии в 1772 году. В этой статье содержится приведение нелинейных уравнений в частных производных первого порядка к линейным устанавливаются понятия полных и общих решений, причем последние выводятся и . первых, и даются методы для нахождения полных решений. Но всё ограничивается только случаем трех переменных, из которых две не зависят друг от друга. Метод Лагранжа заключается в следующем  [c.148]

В работах К. Ф. Черныхаи Л. В. Миляковой [132, 192] пост )о-ена Теория криволинейного слоя постоянной толщины с Ж1 с1-кими лицевыми поверхностями. Кроме сжатия слоя исследовались и другие виды нагружения силами и моментами, приложенными к лицевым поверхностям, а также давлением на боковой поверхности. Лля вывода двумерных уравнений авторы применили вариационный метод, основанный на принципе Лагранжа. Эластомерный слой считался тонким, и слагаемые порядка Л/й отбрасывались.  [c.46]

Эквивалентность уравнений Пуанкаре различным видам уравнений движения. Ранее [14-16] прямыми вычислениями была показана эквивалентность уравнений Пуанкаре движения неголономных систем уравнениям Чаплыгина, Аппеля, Гамеля, Воль-терры, Ферреса и некоторым другим уравнениям. Эквивалентность уравнений движения в квазикоординатах уравнениям Аппеля, а также уравнениям Чаплыгина была доказана в [40] выводом этих групп уравнений из принципа Даламбера-Лагранжа. Уравнения Воронца выведены из уравнений Пуанкаре (5.6) в [21] (см. пример 3.1.1).  [c.35]

В 1773 г. Лаплас опубликовал теорему, впоследствии уточненную Пуассоном (до второго порядка по возмущающим массам), из которой следовало, что Солнечная система устойчива в том смысле, что движение каждой планеты постоянно ограничено собственным сферическим слоем, причем слои разных планет никогда не пересекаются друг с другом. Другими словами, изменения больших полуосей являются чисто периодическими. Зате.м (в 1784 г.) Лаплас, воспользовавшись уравнениями движения планет в форме Лагранжа, пришел к выводу, что наклонения и эксцентриситеты планетных орбит должны все время оставаться малыми. Свои результаты он получил, учитывая лишь первые и вторые порядки этих малых величин. Американский астроном Саймон Ньюком [23] показал, что если массы всех тел, кроме одного, малы (по сравнению с массой единственного большого тела) и орбиты малых тел имеют малые эксцентриситеты и наклонения, то такая задача п тел имеет решение в виде бесконечных многократных периодических тригонометрических рядов. При этом, однако, оставался решающий вопрос о том, сходятся илн расходятся ряды Ньюкома. Если ряды сходятся, то реальные движения планет должны быть ква-зипериодическпми если они расходятся, то о поведении планетных орбит на больших интервалах времени ничего сказать нельзя.  [c.278]

Таким образом, движение рассматриваемого не вполне симметричного тяжелого гироскопа (по отношению к неподвижным в нем осям) характеризуется тем, что траектория одной точки (как например, точки fii) как бы заменяется некоторой частью плоскости pOq , точки которой делаются ей в сущности одинаково доступными, что лишает выводы о формах таких траекторий привычной нам математической четкости. Подобные факты, существующие и в движении гироскопа Лагранжа, Hanpniifep в движении (но уже в пространстве) его вершины и в других случаях движений, в данной задаче особенно выступают вперед. Кроме траекторий точки fii, здесь можно изучать подобные же свойства в движении и других точек и между прочим самой точки fi, конца вектора угловой скорости, который перемещается уже не по плоскости pOq , а по некоторой кривой поверхности, уравнение которой нетрудно найти путем исключения у, у и у" из уравнений четырех интегралов. Тут тоже точка fi будет описывать не линию в обычном смысле, но как бы целые участки такой поверхности, и определенные начальные условия не будут вообще заметно отличать ряд последовательно сменяющих их положений гироскопа от другого подобного ряда, "следующего за совсем другими начальными положениями и только несколько иначе ориентироваснного во времени по отношению к своему началу движения.  [c.87]


Смотреть страницы где упоминается термин Другой вывод уравнений Лагранжа : [c.28]    [c.71]    [c.248]    [c.188]    [c.393]    [c.248]    [c.199]    [c.711]    [c.225]    [c.540]    [c.548]    [c.186]    [c.17]   
Смотреть главы в:

Механика  -> Другой вывод уравнений Лагранжа



ПОИСК



Вывод

Вывод уравнений

Вывод уравнений Лагранжа

Вывод-вывод

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте