Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача геометрически нелинейная простейшая

Рассмотренный пример показывает, что установившейся ползучести может не быть даже в простейших задачах при постоянных внешних силах, если задачи геометрически нелинейны.  [c.122]

Рассмотрим задачу об устойчивости простейшей фермы Мизеса (рис. 16.13), позволяющую учесть геометрическую нелинейность и выявить ее влияние на устойчивость. В качественном отношении рассматриваемая ферма отражает поведение арки или пологой оболочки.  [c.362]


Для того чтобы проследить, как влияет изменение нормальных кривизн в процессе деформации на напряженное состояние, рассмотрим простейшую задачу определения напряжений в длинной цилиндрической оболочке с учетом геометрической нелинейности.  [c.145]

Уравнения нелинейной теории в квадратичном приближении представляют собой простейший вариант теории оболочек, в котором учитываются наиболее существенные особенности геометрически нелинейных задач. Здесь так же, как в уравнениях эластики, предполагается малость удлинений, сдвигов и поворотов элемента оболочки относительно нормали к поверхности, однако тангенциальные составляющие вектора конечного поворота соответствуют умеренным поворотам по классификации п. 9.4.2.  [c.142]

Как уже было отмечено выше, в настоящее время не существует надежных инженерных методик, позволяющих рассчитывать потоки высоковязких полимерных композиций в рабочих органах смесителей, сконструированных но модульному принципу из элементов различной конфигурации. Несмотря на успехи в создании нелинейных теорий, накоплено очень мало количественной информации. Кроме того, нелинейные теории поведения материалов приводят к нелинейным уравнениям, а это означает, что классические методы анализа становятся неприменимыми. Число точных решений нелинейных задач но нелинейному поведению материалов, невелико, и они, все без исключения, относятся лишь к телам простейших геометрических форм при традиционных граничных условиях [31, 41, 45].  [c.97]

Известно, что для тел сложной формы и со сложным характером нагружения наиболее целесообразной является итерационная схема решения контактных задач, предусматривающая использование одного из численных методов, например вариационно-разностного, или метода конечных элементов. В данном случае связь между нагрузками и перемещениями на каждом шаге итерации находилась при помощи метода конечных элементов, который позволил при расчете учесть особенности геометрии диска, наличие сил трения в зоне контакта пальцев с диском, возможную геометрическую нелинейность, связанную с большими перемещениями, и некоторые другие особенности. При решении задачи использовались четырехугольные изопараметрические элементы, позволившие сравнительно просто осуществить автоматизированную подготовку исходной информации и несколько уменьшить ширину ленты глобальной матрицы жесткости, что весьма существенно в условиях дефицита оперативной памяти вычислительной машины. Не останавливаясь на подробностях способа нахождения связи между нагрузками и перемещениями, который в принципе уже описан ранее, изложим непосредственно метод нахождения контактных напряжений на контурах отверстий упругого диска.  [c.76]


Решение вариационных задач сверхзвукового обтекания тел в нелинейной постановке развивалось по двум направлениям. Первое направление основано на использовании приближенных формул, выражающих давление на теле в простом виде через геометрические характеристики тела (подобно формуле Аккерета в линейной теории плоских течений). К таким формулам относятся формулы Ньютона и Буземана, использование которых оправдано в некоторых случаях течений с большой сверхзвуковой скоростью. Обсуждение соответствующих результатов читатель найдет в п. 8.7, посвященном большим сверхзвуковым скоростям. Второе направление, ограниченное пока рассмотрением лишь некоторых  [c.179]

Приведем сравнительные результаты решения геометрически и физически нелинейной задачи о деформации шарнирно опертой цилиндрической оболочки при действии внутреннего давления и осевой растягивающей силы. На рис. 6.4, 6.5 и 6.6 показано изменение угла поворота 0i нормали на шарнирно опертом торце оболочки в процессе последовательных приближений для различных значений внутреннего давления. Сплошными линиями показаны результаты, полученные с помощью комбинированного итерационного процесса, а штриховыми — результаты, полученные на основе стационарного итерационного процесса [74]. Решение, Полученное методом простой итерации, расходится при 9=0,3 кгс/мм , тогда как комбинированный процесс хорошо сходится при любом значении q. При возрастании нагрузки,  [c.148]

II = 3, то задача полностью разрешима (см. 359). Если га > 3, то система (5) уже будет нелинейной, так как она имеет вид (4) даже в самом простом случае га = 4, р = 1. В этом случае применение условий (7) показывает, что четыре стороны и две диагонали четырехугольника должны удовлетворять не только геометрическому тождеству (4), но и необходимому условию  [c.340]

Геометрическая оптика особенно важна, когда точное решение невозможно найти в явном виде или оно чрезвычайно сложно. Даже для более простых задач часто легче найти поведение волнового фронта таким образом, чем выделять его из общего решения. Мы разовьем идеи геометрической оптики на примере волнового уравнения, а затем покажем, как их применять к волнам в неоднородной среде (для которых точные решения могут оказаться недоступными) и к анизотропным волнам (которые имеют сложный вид). В следующей главе с помощью идей геометрической оптики будет развита приближенная теория распространения ударных волн. Из-за нелинейности и многомерности такие задачи чрезвычайно трудно исследовать каким-либо другим способом.  [c.230]

Таким образом, при больших перемещениях необходимо учитывать изменение координат точек тела, а граничные условия удовлетворять на текущей поверхности тела. В относительно простых частньк случаях решение может быть получено в аналитическом виде. Для решения геометрически нелинейных задач необходимо использовать численные методы, например, МКЭ [33].  [c.125]

Изложеьшый алгоритм решения контактных задач реализован в виде программы для ЕС ЭВЛ1 на языке ПЛ/1. Программа выполнена в соответствии с модульным принципом, что позволило осуш,ествить раздельное программирование, отладку и тестирование составных частей пакета программ, а также простую модернизацию и настройку пакета па решение задач различного уровня сложности. Скомпилированные модули хранятся в библиотеке загрузочных модулей на дисковых магнитных носителях прямого доступа н в зависимости от решаемой задачи собираются редактором связей операционной системы в тот или иной выполняемый загрузочный модуль. Можно выделить три уровня собираемых из загрузочных модулей программ для определения НДС конструкций из оболочек вращения по линейной теории и при фиксированном уровне статического или кинематического нагружения по геометрически нелинейной теории и одностороннем контакте со штампом при произвольном распределении шагов по параметру нагрузки по физически и геометрически нелинейным теориям при одностороннем контактном взаимодействии со штампом и произвольном распределении шагов по параметру нагрузки.  [c.39]


Относительно простые уравнения, учитывающие геометрическую нелинейность задачи, получаются, если ввести допущение о том, что в процессе ползучести оболочки при возмущенном движении, обусловленном некоторыми отклонениями от идеальной формы, напряжения и деформации в ней мало отличаются от напряжений и деформаций основного безмо-ментйого состояния. Введение этого допущения позволяет привести задачу об определении прогибов и напряжений пологой оболочки в условиях ползучести к системе из двух нелинейных интегродифференциальных уравнений относительно прогиба и функции напряжений, зависящих от координат на срединной поверхности и времени [87], Эти уравнения отличаются от уравнений, которые были получены ранее [83, 77] при исследовании условных критериев устойчивости, только слагаемыми, учитывающими геометрическую нелинейность. Сведение задачи к системе из двух уравнений позволяет использовать для решения задач ползучести оболочек эффективный прием, аналогичный тому приему, который был предложен Карманом и Тзяном при решении нелинейных задач для упругих оболочек. Прием состоит в разыскании функции прогибов в виде ft (О Щ (х, у), где Wi x, у) — задаваемые функции координат. Вид функции напряжений устанавливается с помощью уравнения совместности. Второе уравнение интегрируется по координатам приближенно в смысле Бубнова — Галеркина. Задача сводится к системе нелиь ей-ных интегральных уравнений относительно функций интегрирование которых при заданных начальных условиях  [c.273]

Развиваемая методика требует не только совершенствования техники решения задач ползучести за счет более точного учета физической и геометрической нелинейности, но № разработки общего метода задания вида начальных возмущений. В простых задачах типа стержня при сжатии, арки под. давлением, оболочки с внешним давлением вид возмущения легко, хотя и не строго устанавливается. Для цилиндрических оболочек в ряде рассмотренных задач выбирались сочетания форм, соответствующих формам упругой потери устойчивости Исследование зависимости результатов от выбора волновых чясел и введение в расчет высших гармоник показало, что первом приближении такой подход приемлем. Этот вопрос очевидно, нуждается в дальнейших исследованиях.  [c.293]

С другой стороны, ползучесть сопровождается упругой и пластической деформацией. Непрерывный рост перемещений со временем вследствие ползучести может привести систему в такое состояние, что перемещения ее мгновенно изменяются на конечную величину. В геометрически нелинейных системах может произойти упругий хлопок, в пластических элементах — мгновенное выпучивание вследствие исчерпания упруго-пластического сопротивления. При решении задач ползучести момент хлопка или выпучивания обнаруживается тем, что скорость роста перемещений обращается в бесконечность при некотором конечном значении перемещений и конечном времени, которое принимается теперь за критическое. Как известно, для начально искривленного стержня из упруго-пласти-ческого материала величина критической сжимающей силы зависит от начального прогиба. Наоборот, если сила задана, то можно указать начальный прогиб, для которого эта сила будет критической. Увеличение прогиба вследствие ползучести можно считать эквивалентным увеличению начального прогиба упруго-пластического стержня таким образом, при любой величине сжимающей силы в некоторый момент достигается критическое состояние. Однако ползучесть вызывает перераспределение напряжений поэтому, как показал С. А. Шестериков (1963), приведенная простая схема пригодна лишь для однопараметрической системы. Исследование выпучивания стержней при наличии пластических деформаций численным методом дано в работе В. И. Ванько и С. А. Шестерикова (1967).  [c.145]

Некоторые приложения теории вязкоупругости. Многочисленные приложения теории вязкоупругости относятся к стержням, пластинам и оболочкам, при этом, кроме общих соотношений вязкоупругости, исследовались и существенно более простые модели типа модели Фойхта или Максвелла. Так, в задачах устойчивости при ползучести основной качественный эффект связан с геометрической нелинейностью, вследствие которой возникает возможность упругого хлопка при рассмотрении отдельных примеров применение линейных соотношений вязкоупругости вместо нелинейного закона ползучести существенно упрощает технику, не меняя.  [c.153]

Программа АУАС2А предназначена для определения приближенных значений динамических перемещений простого маятника при задании начальных условий на перемещения и скорость. Данные, содержащиеся в конце программы, относятся к примеру 2 из п. 2.6, а результаты расчетов помещены в табл. 2.2. С целью исследования других систем с геометрическими нелинейностями типа рассмотренных в задачах из п. 2.1 можно составить варианты этой программы, озаглавив их АУАС2В, АУАС2С и т. д.  [c.456]

В настоящей книге рассматривается самый простой случай, когда материал оболочек подчиняется закону Гука, т. е. имеет место физическая линейность предполагается, что в оболочке перемещения достаточно малы, при этом обеспечивается и геометрическая линейность. Исключение представляет гл. 12, в которой рассматривается геометрически нелинейная теория пологих оболочек. Крше того, предполагается, что внешнее силовое воздействие является статическим. Рассматриваются оболочки с гладкой срединной поверхностью — без ребер, ступеней, острых вершин. Если срединной поверхности оболочки присущи отмеченные выше особенности, то излагаемая в настоящей книге теория справедлива для отдельных частей оболочки, отделенных одна от другой линиями нарушения регулярности для отыскания функций, характеризующих напряженное состояние всей оболочки, приходится решать контактную задачу, для чего выполняется соответствующее согласованйе решений на границах упомянутых частей. Если в оболочке имеются подкрепляющие ее ребра, то и в этом случае теория гладких ободо-чек может быть использована при решении контактной задачи для гладкой оболочки и ребер набора.  [c.10]


Для рассматриваемой модели оказывается затруднительным построение формул суммирования погрешностей деталей из-за нелинейности исходного уравнения (11.219). Эта нелинейность возникает вследствие того, что текущий размер детали выражает суммарно и погрешность размеров, и погрешность формы, и не-прямолинёйность геометрического места центров поперечных сечений. Между тем существует практическая потребность в определении формул такого рода и, в частности, для расчета математического ожидания, дисперсии, среднего квадратического отклонения, практически предельного поля рассеивания и т. п. Для преодоления этого затруднения может быть использован метод статистических испытаний (Монте-Карло), который является весьма перспективным при моделировании, анализе и расчете точности нелинейных технологических процессов. Для упрощенного решения этой задачи можно ограничиться расчетом вероятностных характеристик двух более простых случайных функций, получаемых из исходной формулы (11.219) путем приравнивания нулю либо выражения Wp os ( — -j-nip , либо г +  [c.438]

Целый ряд нелинейных дифференциальных уравнений типа рассматриваемых в этой книге допускает непосредственную геометрическую интерпретацию. В частности, в таком виде можно переформулировать уравнения Гаусса, Петерсона—Кодацци н Риччи и, таким образом, через их репшния выразить компоненты метрического тензора, векторов кручения и тензоров вторых квадратичных форм двумерных минимальных поверхностей. В целом данная интерпретация связана с внутренней геометрией поверхностей в евклидовом, псевдоевклидовом или аффинном пространствах (минимальные поверхности и двумерные поверхности постоянной кривизны). Простейшие из этих уравнений (в частности, уравнения Лиувилля, синус-Гордона и Лунда — Редже) впервые возникли именно в задачах дифференциальной геометрии.  [c.9]

В реальных условиях эккартовское течение осуществить трудно. Дифракция и затухание звука приводят к появлению зависимости силы F от координаты х. Зависимость от поперечной координаты г также оказывается более сложной, чем в фор4 уле (VIII.2.5). Кроме того, на конфигурацию потока оказывает сильное воздействие геометрическая форма области, занятой течением. В результате реальные акустические течения становятся неодномерными, и их следует описывать общими уравнениями (VIII.1.3), (VIH.1.4). Но решить эти уравнения не представляется возможным (даже для простейших областей) главным образом из-за их нелинейного характера. В 2 такой трудности не возникало, так как для одномерной задачи нелинейный член ( 7V) JJ тождественно исчезал.  [c.208]

В 5.9—5.14 в основном по работам Дж. Бейзера с соавторами дано довольно полное изложение нелинейных одномерных волновых движений для идеальных проводников сначала определены характерные скорости и области ( 5.10), затем получены соответствующие условия на скачках Ренки-на —Гюгонио ( 5.11), дана классификация возможных решений в виде ударных волн ( 5.12) и введены некоторые элементарные понятия о простых волнах ( 5.13). Качественный анализ в рамках развитой теории магнитоупругих ударных волн и простых волн дан в 5.14 для задачи о так называемом магнитоупругом поршне (решение в линейном приближении будет также получено геометрическими методами 5.8). В заключение, чтобы почувствовать некоторые особенности анализа магнитоупругой устойчивости токонесущих структур, рассмотрен классический пример растянутого проводящего стержня и токонесущих пластин.  [c.266]

Но это начальное состояние несовместимо с требованием, что поперечная скорость на равняется —Уег. Именно волновое движение и разрешает эту начальную несовместимость. Полученная задача нелинейная. При конструировании нелинейного решения полезны вспомогательные линейные решения (полученные на основе бесконечно слабых разрывов или в рамках геометрической теории магнитоупругости) в том смысле, что, во-первых, они позволяют понять, какую комбинацию волн, медленных, промежуточных и быстрых, можно ожидать в нелинейном решении, и, во-вторых, помогают решить, являются ли волны из этой комбинации ударными волнами или простыми.  [c.323]

В практике расчетов используют как аналитические, так и численные методы. Первые базируются на математических методах решения краевых задач, обычно сложных и трудоемких, и зачастую ограничены достаточно простыми геометрическими формами тел и Схем нагружения. Численные методы, к которым относятся, в частности, метод конечных разностей, метод граничных интегральных уравнений, метод граничных элементов, метод Конечных элементов и другие методы, напротив, не ограничены ни формой тел, ни способом приложения нагрузки. Это, наряду с поасеместным распространением мощной вычислительной техники, способствует их распространению в инженерной среде. Нередки Случаи, когда важно знать эволюцию процесса деформирования (или разрушения) конструкции с продолжающимся во времени внешним воздействием. При этом естественны большие геометрические и физические нелинейности. В таких случаях обойтись без чис-  [c.9]

В основе спектрального метода лежит стандартный математический аппарат, позволяющий приближенно решать дифференциальные уравнения в частных производных. Решение ищется в виде разложения по ряду базисных функций от пространственных переменных с конечным числом членов ряда п. Эффективный способ применения спектральных методов к решению нелинейных дифференциальных уравнений, описывающих гидродинамические процессы, предложен Орсегом 30]. Преимуществом спектрального метода является возможность точного удовлетворения граничных условий при правильном подборе базисных функций, впрочем, только для областей с простой геометрией. Кроме того, этот метод в определенных условиях позволяет получить более точное решение по сравнению с методом, основанным на интегрировании по контрольному объему. Однако применение спектрального метода к решению системы уравнений Навье—Стокса встречает значительные трудности. Число базисных функций п вычисляется как отношение наибольшего характерного геометрического масштаба поля течения к наименьшему. Например, в случае течения в ограниченной области пространства наибольший масштаб имеет порядок размеров этой области, а наименьший определяется толщиной вязкого слоя вблизи стенки. Для сложных пространственных задач и течения с большими числами Рейнольдса указанное отношение может быть достаточно велико. Очевидно, ошибка численного решения уменьшается с ростом числа базисных функций п. Приемлемая точность решения часто не может быть достигнута из-за непомерно возрастающего с ростом п объема вычислений. Кроме того, при применении спектрального метода ошибка решения носит глобальный характер (т.е. появление погрешности решения в какой-либо точке приводит к распространению ошибки на всю область независимых переменных). С увеличением степени нелинейности уравнений эффективность спектральных методов снижается. Поэтому спектральные методы используются в основном для исследования однородной или изотропной турбулентности или для расчета течения в областях простой формы.  [c.197]


Несмотря на успехи в создании нелинейных теорий поведения материалов и конструкций, те, кто сталкивается с феноменом нелинейности в практической деятельности, располагают очень малой количественной информацией. Нелинейные теории приводят к нелинейным уравнениям, а это означает, что классические методы анализа сразу становятся неприменимыми. Число точных решений нелинейных задач, имеющихся во всех опубликованных работах по нелинейному поведению материалов и конструкций, можно пересчитать по пальцам, но и они, все без исключения, относятся лишь к телам простейших геометрических форм при простейших граничных условиях. Часто применяется полуобратный метод , когда вид деформированного тела предполагается известным заранее (еитуация, которую редко встретишь на практике), но даже ш в этом случае для получения количественных результатов на заключительном этапе обычно используются численные методы.  [c.10]


Смотреть страницы где упоминается термин Задача геометрически нелинейная простейшая : [c.8]    [c.30]    [c.149]    [c.172]    [c.117]    [c.7]    [c.66]    [c.77]    [c.88]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.28 , c.34 , c.115 , c.124 ]



ПОИСК



Геометрическая задача

Задача геометрически нелинейная

Нелинейность геометрическая

Нелинейные задачи

Простейшие задачи



© 2025 Mash-xxl.info Реклама на сайте