Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конечно-разностные методы решения задач теплопроводности

КОНЕЧНО-РАЗНОСТНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ  [c.69]

В связи с интенсивным развитием вычислительной техники в последнее время получил большое распространение конечно-разностный метод решения задач нестационарной теплопроводности, или метод сеток. Методом конечных разностей может быть решена практически любая задача теплопроводности с произвольными начальными и фаничными условиями и переменными физическими параметрами тела.  [c.115]


Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]

Выбор конечно-разностной схемы для численного решения уравнения теплопроводности. Уравнение теплопроводности при переменных граничных условиях и наличии лучистого теплообмена на границе тела может быть решена методом сеток. При решении задачи по явной разностной схеме допустимый шаг по времени  [c.194]

Все рассмотренные нами ранее разностные схемы для решения уравнений теплопроводности являются реализациями метода конечных разностей. Системы алгебраических уравнений для определения численного решения мы получали путем замены производных в дифференциальном уравнении и в граничных условиях или в уравнениях теплового баланса для элементарных ячеек конечными разностями. Таки.м образом, в методе конечных разностей отправной точкой для получения приближенного решения является дифференциальная краевая задача. Однако искомое поле можно находить и из решения соответствующей вариационной задачи. На ее численном решении основан получивший широкое распространение метод конечных элементов (МКЭ) [7, 27].  [c.128]

Конечно-разностные схемы для решения двухмерных и трехмерных задач. Рассмотренный выше метод решения систем неявных конечно-разностных уравнений применим и при решении двухмерных задач нестационарной теплопроводности в случае использования следующей разностной схемы переменных направлений  [c.92]


Основным численным методом решения дифференциальных уравнений теплопроводности является метод конечных разностей [23]. Формально он базируется на приближенной замене в дифференциальном уравнении и граничных условиях производных разностными соотношениями между значениями температур в узлах конечно-разностной сетки. В итоге для каждого узла с неизвестным значением температуры получается алгебраическое уравнение, которое для задачи стационарной теплопроводности может быть также получено из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплопроводящих стержней [12, 18]. Методы решения таких уравнений хорошо разработаны [24], а для реализации этих методов в математическом обеспечении современных ЭВМ предусмотрены стандартные программы. Алгебраическому уравнению для каждой узловой точки можно дать вероятностную интерпретацию и использовать для решения задач метод статистического моделирования (метод Монте-Карло) [12].  [c.44]

Решение тепловых задач в средствах линейных измерений при нестационарных и неоднородных граничных условиях с учетом реальных форм измерительных систем можно получить методом электрического моделирования пространственных областей сетками электрических сопротивлений [6]. При этом дифференциальные уравнения теплопроводности заменяются системой конечно-разностных уравнений.  [c.53]

Расчетные зависимости (9-12) — (9-18) позволяют определить все омические сопротивления при моделировании по неявной схеме на -сеточной модели.-Следует отметить, что рассмотренный метод основан на аналогии между конечно-разностными уравнениями теплового процесса и уравнениями токов в электрической цепи. Поэтому особенности конечно-разностных уравнений присущи и электрическим моделям. Метод позволяет сравнительно просто рещать нелинейное уравнение теплопроводности и вводить корректировку в процессе решения. Однако дискретность временной и пространственной координат приводит к сложной сеточной модели, и рещение новых задач сопряжено с заменой или новой установкой части или всех омических сопротивлений.  [c.347]

Турбулентная структура потока рассчитьшалась по формуле Рейхардта для учета переменности свойств безразмерное расстояние от стенки т = V /32 Reg определялось по значениям р и д при Т .. Расчет обеспечивал сходимость найденной интегрированием среднемассовой энтальпии, полученной решением одномерного уравнения энерх ии. Было показано, что из-за высокой температуропроводности газа влияние нестационарной теплопроводности незначительно и существенно меньше, чем по экспериментальным данным (рис. 1.3). Аналогичные результаты дало численное решение данной задачи конечно-разностным методом при R n = 10 . ...3 10 , выполненное на БЭСМ-6. Для жидкостей из-за более низкой температуропроводности этот эффект более значителен, однако экспериментальные данные также расходятся с результатами расчета (рис. 1.4) [24].  [c.31]

Из численных методов, используемых при решении задач теплопроводности, обычно используется метод конечных разностей. Такое наз1вание метода связано с тем, что в этом случае раосмат-рн вае мая непрерывная область разбивается на конечное число дискретных элементов, для которых записываются разностные уравнения, основанные на законе сохранения энергии, которые позволяют шязать температуру каждого из рассматриваемых эле-меатов с температурами соседних элементов.  [c.25]

Определение законов распределения температуры в элемен тах конструкции представляет собой типичную краевую задачу Задана температура или тепловой поток на границе области требуется определить температуру в каждой точке тела. Реше ние сводится обычно к дифференциальным" уравнениям в част ных производных, константами которых являются коэффициен ты теплоемкости и теплопроводности среды. Сложность решения существенным образом определяется формой тела. Такого же рода задачи своГк твенны теории упругости, аэродинамике и гидродинамике. Аналитическое решение этого класса задач представляет, как правило, непреодолимые трудности. Поэтому при исследовании температурных полей широко используются приемы моделиро вания и численные конечно-разностные методы.  [c.342]


Для решения системы нелинейных уравнений параболического типа (1.8). .. (1.11) с краевыми условиями (1.12). ... .. (1.14) может быть применен метод сеток с использованием явной схемы, согласно которому система уравнений приводится к безразмерному виду и записывается в конечных разностях. Вид конечно-разностных аналогов исходных уравнений и метод их решения применительно к рассматриваемой задаче представлены в [9]. Алгоритм решения этой задачи бьш реализован в виде программы расчета на БЭСМ-4М. При расчете задаются геометрические размеры пучка, параметры потока теплоносителя на входе в пучок, распределение тепловыделения (теплоподвода) у по длине и радиусу пучка и физические свойства теплоносителя. Для замыкания системы уравнений из эксперимента определяются эффективные коэффициенты турбулентной теплопроводности Хдфф, вязкости эфф п коэффициент гидравлического сопротивления % в виде зависимотей от критериев подобия, характеризующих процесс [39].  [c.16]

Однако применение явных схем метода чередующихся направлений для решения задач гидродинамики ограничено по двум причинам. Во-первых, хотя для внутренних точек конечно-разностная схема (3.316) является явной, в целом эта схема фактически будет неявной из-за граничных условий. При первом направлении обхода по схеме (3.316а) должно быть известно значение с (д+1)-го временного слоя при втором направлении обхода по схеме (3.3166) должно быть известно значение где / = maxi. Это обстоятельство не вызывает осложнений в случае задач теплопроводности, где температуры или градиенты температуры на границах, как правило, известны для всех моментов времени. Но значения вихря на стенке не известны и, как уже было отмечено при обсуждении неявных схем метода чередующихся направлений, это вызывает затруднения. Во-вторых (и это гораздо важнее), если данная схема комбинируется с другими схемами и в ней для конвективных членов используются какие-либо варианты аппроксимации из схемы с разностями против потока, схемы с разностями вперед по времени и центральными разностями по пространственным переменным, схемы чехарда и явной схемы метода чередующихся направлений, то полученная комбинированная схема либо оказывается безусловно неустойчивой, либо для нее опять появляются ограничения вида 1 и /г ), характерные для явных схем. Единственной сравнительно успешной комбинацией является комбинация схемы, в которой по обоим чередующимся направлениям обхода точек используются разности против потока для конвективных членов и явной схемы метода чередующихся направлений с осреднением для диффузионных членов (см. Ларкин [1964])  [c.148]


Смотреть страницы где упоминается термин Конечно-разностные методы решения задач теплопроводности : [c.5]    [c.148]    [c.210]   
Смотреть главы в:

Применение ЭВМ для решения задач теплообмена  -> Конечно-разностные методы решения задач теплопроводности



ПОИСК



Задача и метод

Задача теплопроводности

Задачи и методы их решения

Конечно-разностный метод

Конечно-разностный метод решения задачи

МЕТОД Теплопроводность

Методы решения задач теплопроводности

Разностная задача

Разностный метод

Решение конечно-разностное

Решения метод

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте