Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации пластические — Виды и температуры

Форма истинной диаграммы напряжений, а следовательно, и величина сопротивления материала пластическим деформациям, зависит от рода материала, температуры, скорости деформации и вида напряженного состояния.  [c.37]

В условиях опыта изменение размера зоны пластической деформации перед вершиной трещины находилось в прямой и однозначной зависимости от частоты нагружения и температуры. Рассматриваемые результаты эксперимента свидетельствуют о возможности использования известных для многих материалов физических характеристик их поведения в условиях монотонного растяжения для описания распространений усталостных трещин. Существенным моментом введения указанных поправок на предел тек ести материала являлось то, что они использовались в виде сомножителей. Можно считать, что для материалов имеется диапазон совместного изменения частотно-темпе-ратурных условий нагружения, в котором (при прочих равных условиях) в результате взаимного влияния этих факторов не происходит усиления или замедления процесса роста трещины.  [c.353]


Фреттинг-процесс — разрушение поверхностей деталей машин, проявляющееся в резко интенсифицированном окислении или схватывании. Значительная интенсификация окисления и схватывания вызвана динамическим характером нагружения, при котором на контакте резко увеличивается градиент деформаций и температур. Усталостные явления при трении автор ограничивает только условиями качения. Основные характеристики и развитие усталостных повреждений определяются процессами повторной пластической деформации, упрочнением и разупрочнением поверхностных слоев, возникновением остаточных напряжений и особых явлений усталости. Следует отметить, что повторная знакопеременная деформация, упрочнение и разупрочнение свойственны многим видам разрушения и при трении скольжения.  [c.13]

Коррозионное поведение алюминия и его сплавов зависит от условий эксплуатации — природы составляющих агрессивной среды, их концентрации, температуры, перемещения среды и др. Большое значение для коррозионной устойчивости имеет также чистота алюминия, вид и количество легирующих элементов в его сплавах, вид термообработки и пластической деформации, состояние поверхности и др.  [c.124]

Таким образом, при напряженном состоянии, отличающемся от всестороннего сжатия, металлы проявляют способность приобретать остаточные деформации ). Неупругость проявляется после того как внешняя нагрузка достигнет некоторого определенного значения, зависящего от материала и вида напряженного состояния в образце. Эта способность к необратимым деформациям сохраняется у металлов и при весьма низких температурах, когда тепловые колебания атомных частиц практически отсутствуют. Отсюда следует, что металлические тела могут приобретать пластическую деформацию, внутренний механизм которой не связан с тепловым движением. Такого рода пластичность принято называть холодной или атермической.  [c.726]

В результате лабораторных исследований по изучению влияния группы факторов внешних механических воздействий на количественные и качественные характеристики процесса трения и изнашивания было установлено, что скорость скольжения, удельная нагрузка, вибрации при трении вызывают в поверхностных объемах металлов комплекс процессов — повышение температуры, напряжения, химической активности металла, пластические деформации, диффузионные явления, структурные и фазовые изменения, обусловливающие в определенном сочетании образование, развитие, границы существования. видов износа в условиях схватывания первого и второго рода и их переход в другой вид износа.  [c.47]


Во всех случаях на рисунке показаны предельные циклы, не приводящие к циклической пластической деформации и, следовательно, рассматриваются соответствующие стабилизированные состояния, которые возникают после некоторой пластической деформации в нулевом полуцикле. Линия / всюду отвечает условиям знакопеременного течения, линия 2— условиям прогрессирующего разрушения (в том смысле, что превышение параметрами нагружения предельных интервалов их изменения, показанных на рисунке, привело бы к возникновению соответствующего вида циклической пластической деформации — знакопеременной или односторонней). Линия 3 иллюстрирует случай, когда при пропорциональном изменении нагрузки и температуры достигается сразу состояние предельного равновесия (р=ро).  [c.23]

Графики зависимости пластических деформаций от времени, называемые кривыми ползучести, имеют вид, представленный на рис. XI.2. Вид этих кривых зависит от напряжения и температуры, при которых работает материал детали. Процесс ползучести можно разделить также на три стадии (периода). На стадии I скорость  [c.444]

Оптически чувствительные слои на поверхности детали [32]. Слой из оптически чувствительного материала (например, ЭД6-М) наносится на поверхность металлической детали или ее модели в жидком виде (и затем подвергается полимеризации) или наклеивается на нее в виде пластинки. Измерения проводят в пределах пропорциональности между наблюдаемым порядком полос интерференции и деформацией в слое. С применением нормального и наклонного просвечивания поляризованным светом, который отражается от поверхности металла, определяют разность и величины главных напряжений и их направления. Деформации (и напряжения) в поверхности металлической детали могут находиться как в пределах, так и за пределом упругости. При деформациях в пластической области для определения напряжений необходимо иметь зависимость между напряжениями и деформациями для данного материала и имеющегося соотношения главных деформаций. Для повышения предела пропорциональности слоя эксперимент может проводиться при повышенной температуре, соответствующей методу замораживания (100—130°) или применяют соответствующий материал слоя.  [c.595]

Основными определяющими параметрами процесса упругопластического деформирования материала являются степень пластической деформации (или вид и длина траектории деформации при сложном нагружении), температура, скорость деформирования и гидростатическое давление.  [c.130]

Для использования этих математических моделей пластической деформации и расчета значения сопротивления деформации K(f) необходимо иметь информацию о функции ДА,). Для того, чтобы использовать более сложную модель (4.22) и описывать процессы, происходящие при переменных температуре, степени деформации и структуре, необходимо иметь сведения о влиянии этих факторов на функцию ДА,). По-видимому, для получения такой информации применительно к каждому материалу требуется проведение тщательного, широкомасштабного эксперимента по исследованию влияния всех перечисленных факторов на вид и параметры распределения ДА,).  [c.157]

Уже отмечалось, что сопротивление сдвигу аморфного сплава в условиях, отвечающих идеальной пластичности, характеризуется развитием деформации в полосах скольжения, в то время как основной объем остается деформированным упруго (негомогенная деформация). Такое течение нечувствительно к температуре (см. рис. 154) и скорости деформации и характеризуется, как и в случае идеальной пластичности, отсутствием стадии упрочнения. При негомогенном течении суммарная деформация определяется числом полос сдвига, что приводит к сильной зависимости общей пластической деформации от числа полос скольжения, определяемого напряженным состоянием, при котором осуществляется деформация. Это не позволяет по виду кривой растяжения судить о пластических свойствах материала.  [c.297]


Разрушение в результате ползучести происходит, когда пластическая деформация элемента машины или конструкции, накопленная в течение некоторого времени действия напряжений и температуры, приводит к изменениям размеров, вследствие которых элемент не может удовлетворительно выполнять предназначенную ему функцию. Процесс ползучести, как правило, можно разделить на три стадии (1) неустановившуюся, или первичную, ползучесть, во время которой скорость деформации уменьшается (2) установившуюся, или вторичную, ползучесть, во время которой скорость де( юрмации практически постоянна, и (3) третичную ползучесть, при которой скорость деформации ползучести увеличивается (часто довольно быстро) вплоть до разрушения. Такой вид разрушения часто называется разрывом при ползучести. Произойдет или нет такое разрушение — зависит от характера изменения во времени напряжений и температуры.  [c.21]

Эта величина пластической деформации зависит от свойств материала (вида и структуры) условий деформации (вида напряженного состояния, температуры и скорости деформации).  [c.449]

Температура рекристаллизационного отжига и время выдержки зависят от вида и размеров деформированного полуфабриката и назначения отжига (промежуточный между операциями пластической деформации или окончательный) (табл. 19.5).  [c.726]

Отпуск. Зависимость пластической деформации некоторых высокоуглеродистых сталей от температуры и длительности отпуска под нагрузкой представлена на рис. 10—12. Как показывают эти данные, температура отпуска влияет значительно сильнее, чем выдержка. При этом следует иметь в виду, что значительная часть пластического эффекта реализуется уже во время прогрева и, затем, в первые минуты выдержки.  [c.230]

Уравнение (III.184) соответствует следующей гипотезе интенсивность касательных напряжений при пластическом течении является функцией температуры и интенсивности скоростей деформаций сдвига Н, не зависящей от вида напряженного состояния.  [c.135]

Ползучестью называют явление накопления в материале деформации во времени при действии постоянной нагрузки в определенном для каждого материала диапазоне температур испытания. При нагружении элемента конструкции деформация его возрастает от нуля до некоторой величины. В зависимости от уровня приложенного напряжения деформация, возникающая при нагружении, может быть упругой или упруго-пластической. Деформация элемента возрастает со временем. Результаты экспериментального измерения деформации ползучести обычно представляют в виде зависимости деформации от времени нагружения при постоянных напряжениях и температуре. Эти графики называются кривыми ползучести .  [c.352]

Вид кривых ползучести зависит от уровня приложенного напряжения и температуры, при которых испытывался образец. В общем случае процесс ползучести делится на три стадии (рис. 5.101). Для нагретого образца приложение нагрузки приводит к возникновению деформации, которая возрастает от нуля до некоторой величины (отрезок ОА на рис. 5.101). При напряжении, меньшем предела пропорциональности (а д), деформация является упругой. Если напряжения больше Ощ, то деформация состоит из упругой и пластической (остаточной) деформации.  [c.352]

Расчеты деталей машин на ползучесть основываются на результатах экспериментального изучения ползучести при одноосном растяжении постоянной нагрузкой. Результаты исш>1таний обрабатываются в виде графиков, представляющих зависимость от времени полных е или пластических Ер деформаций при постоянных нагрузках и температуре. Эти графики называются кривыми ползучести.  [c.230]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


Дан анализ структуры и свойств чистых металлов и сплавов, монокристаллов и поликристаллических агрегатов при пластической деформации с привлечением теории дислокаций. Приведены современные физические представления о механизмах пластической деформации, явлений упрочнения, разупрочнения, разрушения, тексту-рообразования в зависимости от типа кристаллической решетки, вида легирования, температуры и скорости деформации, размера зерна, фазового состояния и др. Рассмотрены физические основы разработки новой и усовершенствования суш.ествующей технологии обработки давлением, включая ТМО и обработку в условиях сверхпластичности.  [c.2]

При достаточно высокой степени деформации (е> >80- -90%) максимальная разориентация соседних ячеек превышает 5—10° при средней разориентации 2—3°. Имеется критический угол 0кр разориентировки границы ячеек. При 0<0кр<2н-5° границы ячеек оказывают сопротивление движению дислокаций по типу сопротивления дислокаций леса . Если 0> 2-4-5°, границы ячеек становятся столь же эффективными барьерами для передачи скольлсения, как и границы зерен, повышая тем самым деформирующее напряжение. Передача пластической деформации через такие границы сопровождается нагромождением дислокаций. В отличие от разных стадий пластической деформации, когда длина плоскости нагромождения ограничена размером металлографически выявляемого зерна, при больших деформациях длина плоскости нагромождения ограничена размером ячейки. Формирование ячеистых дислокационных структур зависит от условий деформации, среди которых главными являются температура, степень и скорость деформации, вид напряженного состояния. Многочисленные экспериментальные данные дают основание утверждать что снижение температуры деформации, повышение скорости деформации, легирование (при условии, что легирование не сильно влияет на величину энергии дефекта упаковки) или загрязнение металла, повышая напряжение течения, одновременно затрудняют формирование ячеистой структуры. Ячеистая структура оказывает непосредственное влияние на свойства деформированного металла, причем структурно чувствительные механические свойства зависят не только от размера ячейки, но и от угла 0 между соседними ячейками.  [c.251]

Введение примесей в металл (легирование) увеличивает температуру рекристаллизации. Чем выше степень деформации, тем ниже температура рекристаллизации. Если пластическая деформация происходит при температуре выше температуры рекристаллизации, то эффект упрочнения будет устраняться процессом рекристаллизации. При нагреве нагартованного металла ниже температуры рекристаллизации наклепанное состояние металла сохраняется. Это дает основание различать два вида обработки металла горячую и холодную деформации. Горячая деформация — пластическая деформация выше температуры рекристаллизации холодная деформация — пластическая деформация ниже температуры рекристаллизации.  [c.85]

Скорость деформации и температура аналогичным образом влияют на параметры процесса разрушения через изменение жесткости напряженного состояния, не меняя самого процесса в определенном диапазоне изменения указанных факторов. Сочетание низкой скорости деформации и высокой степени стеснения пластической деформации может изменить механизм вязкого разрушения, например от преимущественного формирования ямочного рельефа в условиях отрыва до вязкого внутризеренного, путем сдвига при нарушении сплошности по одной из кристаллографических плоскостей. Указанный переход в развитии процесса разрушения был выявлен при испытании круглых образцов диаметром 5 мм с надрезом из жаропрочного сплава ЭИ437БУВД при температуре 650 °С. Медленный рост трещины характеризовался следующими элементами рельефа гладкие фасетки со следами внутризеренного множественного скольжения по взаимно пересекающимся кристаллографическим плоскостям, вышедшим в плоскость разрушения, и волнистый рельеф в виде пересекающихся ступенек, которые также отражают процесс кристаллографического скольжения (рис. 2.6а). Аналогичный характер формирования поверхности разрушения был выявлен в изломе на участке ускоренного роста трещины при эксплуатационном разрушении диска турбины двигателя (рис. 2.66). Диск был изготовлен из того же жаропрочного сплава ЭИ437БУВД. Разрушение диска было усталостным. Сопоставление описываемых. элементов рельефа в ситуации монотонного растяжения с низкой скоростью деформации и повторное циклическое нагружение дисрса в эксплуатации привели к идентичному процессу разрушения. В отличие от разрушения образца в диске развитие трещины происходило при медленном возрастании нагрузки в момент за-  [c.91]

Исследования проводили на образцах в виде пластинок ориентации [111], полученных выпиливанием и шлифованием из природных кристаллов, а также на сколах алмазов. Все образцы принадлежали к типу 1а, G содержанием азота 5 10 —3 10 см . Используемые образцы были достаточно совершенны, имели зональное распределение азота, плотность дислокаций составляла не более 10 Эксперименты по деформации алмаза в области его стабильности проводили в камерах типа наковальни с лункой сферической и тороидальной формы. Образцы размещали внутри цилиндрического нагревателя параллельно его образующей в зонах максимального градиента касательных напряжений. В качестве упруго-пластической среды, передающей давление и одновременно являющейся химически инертной по отношению к алмазу, использовали технический карбонитрид бора. Градуировка давления в камерах выполнялась по общепринятой методике [И], а температуры — с помощью термопары ПП-1 и по температуре плавления платины (2050° С) при давлении 50 кбар. Время выдержки при Т = onst и р onst составляло 1—10 мин, времена нагрева и нагружения 5—10 мин, скорость охлаждения равна 200 град сек. Образцы до и после деформации изучали методами рентгенографии и оптической микроскопии.  [c.151]

Как видно из табл. 19, изменение величины U в ряду Si—Ge—InSb— GaAs—GaP (в такой же последовательности происходит и увеличение ионной составляющей в силах связи) не носит закономерного характера, тогда как приведенная энергия активации перемещения дислокации Е закономерно уменьшается. В то же время приведенная температура перехода в пластичное состояние практически одна и та же для всех указанных веществ, за исключением GaP, где вклад ионной составляющей в силах связи наибольший. Принимая во внимание общность характера двух высокотемпературных участков, описываемых в принципе соотношениями (46) и (47), можно предположить, что в первом высокотемпературном участке пластическая деформация осуществляется двойникованием. Действительно, поскольку этот вид деформации происходит путем образования и движения перегибов на частичных дислокациях, то к этому процессу должны быть применимы уравнения (46) и (47), что и наблюдается в действительности. Напряжение Пайерлса при низких температурах для деформации двойникованием ниже, чем для скольжения. Это  [c.252]


Области метастабильностн в" и в показаны на рис. 85. Видно, что для сплавов, содержащих> 1 % Си, старение может происходить через всю последовательность превращений как при естественном старении при комнатной температуре, так и при искусственном при температуре в интервале 160—200 °С. Это возможно, если бы сплав имел структуру идеального кристалла без дислокаций и границ зерен. Однако выделения из реального пересыщенного раствора не могут быть даже качественно поняты, основываясь только на знаниях стабильных и метастабильных фазовых диаграмм. Знания роли дефектов решетки как мест зарождения являются необходимыми для понимания вида и распределения выделений в зависимости от температуры раствора, скорости закалки, пластической деформации, температуры старения и так далее. Дефектами решетки, которые влияют на зарождение и рост выделений, являются вакансии, дислокации, границы зерен и другие несовершенства структуры.  [c.236]

Если при нагреве какого-либо элемента температура по его сечению распределяется равномерно или по линейному закону, то нагрев и остывание не вызовут в нем ни временных напряжений в процессе нагрева, ни остаточных напряжений после полного остывания. Если распределение температуры по сечению элемента неравномерно, то вследствие жесткости э.чемента в процессе нагрева в нем будут возникать временные напряжения. Если эти временные напряжения не превзойдут предела текучести материала (при данном виде напряженного состояния и при данной температуре), то к моменту полного остывания температурные напряжения исчезнут, и остаточные напряжения не возникнут. Если же в процессе нагрева или остывания временные температурные напряжения в какой-либо части сечения элемента достигнут предела текучести и появятся пластические деформации, то пос.че полного остывания в элементе будут существовать остаточные напряжения. Таким образом, остаточные напряжения в металле, образовавшиеся в результате температурных деформаций, равны по величине и обратны по знаку напряжениям, исчезнувшим в процессе температурного цикла вследствие протекавших в металле пластических деформаций.  [c.210]

Таким образом, анализируя рассмотренные выше экспериментальные данные по малоцикловому деформированию при мягком режиме нагружения с временными выдержками на экстремумах нагрузки (см. рис. 4.8—4.10), можно видеть, что как температура испытаний, так и форма цикла накладывают свои особенности на кинетику деформаций в этих условиях. В общем случае для комнатной и умеренных температур кинетика ширины петли пластического гистерезиса и односторонне накопленной в циклах деформации ё > описывается зависимостями (2.10) и (2.18). Причем для циклически упрочняющихся материалов в двойных логарифмических координатах, что соответствует степенному виду кинетической функции, они представляют собой прямые ниспадающие линии (рис. 2.3, в), а для циклически разупрочняющихся материалов в полулогарифмических координатах — прямые восходящие линии (рис. 2.3, а), отвечающие экспоненциальному виду этих зависимостей. Как показывают приведенные выше экспериментальные данные для высоких температур и сложной формы цикла нагружения, в этих условиях наблюдается более сложный характер поведения деформационных характеристик. Так, уже при 450 С сталь Х18Н10Т обнаруживает в исходных циклах некоторое упрочнение, переходящее затем на основной стадии процесса деформирования в циклическое разупрочнение, причем это характерно как для нагружения с треугольной, так и с трапецеидальной формами цикла. Если при t = 450° С степень разупрочнения еще невелика, то с повышением температуры до 650° С, когда начинается интенсивное проявление в материале температурно-временных эффектов, кинетика деформаций становится ярко выраженной и в существенной степени зависящей от времени, формы цикла и уровня нагружения. Указанные обстоятельства не учитываются зависимостями (2.10), (2.18) и для их описания было предложено [13] связать параметры этих уравнений с механическими свойствами материалов, а последние рассматривать зависящими от температуры и времени нагружения.  [c.79]

В настоящей работе были исследованы некоторые структурные закономерности ыикропластической деформации приповерхностных слоев стали Х18Н9Т в условиях нагружения их силами контактного трения, которое осуществлялось при горячей запрессовке стального клина или конуса в алюминиевые сплавы АМгЗ или АД1 за счет пластического течения более мягкого дгатериала по поверхности более твердого. При этом в области невысоких температур, когда схватывание материалов отсутствует, можно исследовать процесс контактного трения и закономерности поверхностной микропластической деформации в чистом виде. При более высоких температурах с помощью данной методики можно изучать также кинетику протекания процесса схватывания и активирующую роль пластической деформации в этом процессе.  [c.101]

Исследования крупнозернистой аустенитной стали 12Х18Н9Т в условиях симметричного и несимметричного (по величине деформаций в полуциклах растяжения и сжатия и по времени выдержки при экстремальной деформации) механического нагружения в жестком режиме при температурах 700 и 900 С показали, что явные признаки зернограничной пластической деформации в виде смещения зерен одного относительно другого имели место только при асимметричном нагружении [2].  [c.103]

На рис. 1.18 показаны [10] кривые напряжение — деформация, полученные при растяжении при различных температурах монокристалли-ческих образцов сплава, % (по массе) Си — 34,72п — 3,08п, в котором происходит термоупругое мартенситное превращение. Характерным является то, что форма кривых напряжение — деформация значительно различается в зависимости от соотношения между характеристическими температурами превращения сплава (М , Mf,A f) и температурой испытаний Т. При А <Т после упругой деформации исходной фазы происходит пластическая деформация, однако деформация почти полностью исчезает при снятии нагрузки. Эта нелинейная упругость, при которой происходит возврат кажущейся пластической деформации около 7 %, независимо от причин называется общим термином псевдоупругость. В данной книге этот вид псевдоупругости по причинам.  [c.31]

На стойкость штампов влияют много факторов, связанных с поковкой (геометрия, масса, температура, материал и заложенная технология), с самим штампом (материал, структура, состояние поверхности, геометрия формы, количество ручьев, температура штамп, способ его восстановления), с оборудованием для ковки (избыгок энергии удара молота по отношению к работе пластической деформации техническое состояние оборудования и скорость удара), а также с условиями эксплуатации (вид смазки штампа, способ нагрева поковки, время контакта поковки со штампом, состояние окалины, охлаждение и удаление окалины, а также процесс ковки) [144].  [c.42]

Основным видом пластической деформации является скольжение. Если скольжение затруднено, то значительный вклад в пластическую деформацию вносит двойникование. При высоких температурах и малых скоростях деформирования поликристаллические материалы могут пластически де юрмироваться также в результате скольжения по границам зерен и в результате диффузионной ползучести.  [c.33]

При печиом иагреве в изделиях, собранных под пайку и состоящих из тонкостенных плоских деталей, у которых внутренние участки экранированы, а края относительно свободно перемещаются и подвергаются прямому облучению, может развиваться пластическая деформация, например, в виде сборок . Подобные сборки на стали 12Х18Н9Т образуются при иагреве в интервале 00—800° С, т. е. при температуре снижения модуля упругости паяемого материала. Поэтому нагрев при пайке выше температуры, при кото рой основной материал теряет свои упругие свойства, в условиях значительных тепловых перепадов (>100°С) вдоль тонкостенных деталей может приводить к деформации их краев.  [c.235]

Это уравнение предложено в 1909 г. Люд-виком [54]. Оно дает возможность рассматривать состояние твердого тела по аналогии с уравнением состояния газа, называют это уравнение механическим уравнением состояния твердого тела. Смысл уравнения заключается в том, что скорость ползучести в произ-вольный момент времени определяется деформацией, напряжением и температурой в этот момент времени, а предыстория этих параметров не влияет на нее. Такой подход не ограничен ползучестью, он применяется вообще в отношении пластической деформации в широком смысле он соответствует теории деформационного упрочнения. Если между деформацией ползучести е , напряжением o и временем t при постоянных температуре и напряжении устанавливается соотношение в виде (а, а, п — константы материала), то уравнение для скорости ползучести можно представить в виде  [c.120]

Термической называют усталость, возникающую вследствие циклического изменения термических напряжений при изменении температуры. Из-за стеснения теплового расширения или теплового сжатия при термической усталости возникает упругая деформация, упруго-пластическая деформация или упруго-пластическая ползучесть. В соответствии с этими видами деформации можно выделить усталость в упругой области (многоцикловую усталость), в упруго-пластической области (малоцикловую усталость) или в области упруго-пластической ползучести (наложение ползучести и усталости). Даже при одинаковой термической деформации, обусловленной одним и тем же градиентом температуры, но при различной степени стеснения деформации (коэффициенте стеснения), различаются и величина механической деформации (упругой, пластической или ползучестй) и величина термических напряжений. Кроме того, если изменяется температурный цикл, то различаются как доля упруго-пластической деформации (не зависящей от времени), так и доля деформации ползучести (зависящей от времени) на один цикл изменения температуры.  [c.245]


Более полная модель определяющего уравнени , применимая при высоких скоростях деформации в ударных волнах, предложена в [5]. Определяющее соотношение для динамического предела текучести в этой работе представляется функцией приведенной пластической деформации бр, давления Р, приращения температуры ДГ и относительного сжатия б в виде  [c.180]

Тарстон, по-видимому, первым отметил, что кривые упрочения металлов имеют параболический вид, и показал, что значения функций напряжение — деформация во всей области пластических деформаций возрастают с убыванием температуры. Насколько мне удалось выяснить, Тарстон первым из экспериментаторов предположил, что в пластичности может иметь значение вязкость (Thurston [1876, 1]). Он отметил, что ординаты графика функции напряже-ние — деформация при увеличении скорости нагружения в целом увеличиваются. Эти наблюдения за вязко-пластичностью основывались на испытаниях, которые выполнены при сравнительно низких скоростях деформаций для того, чтобы избежать инерционных эффектов.  [c.44]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]

При дополнительном учете вязкоупругих свойств дюралюминия и фторопласта кривая 2 практически не изменяет своего вида и положения. Это объясняется малой вязкостью металла при комнатной температуре. Однако если рассмотреть гипотетический материал с упругими характеристиками сплава Д16Т и ядром релаксации фторопласта в качестве материала несуш их слоев, то в результате получим кривую 3, соответствуюш ую случаю вязкоупругопластичности. Вязкость здесь приводит к уменьшению модуля амплитуды колебаний А и областей пластических деформаций в слоях пластины.  [c.452]


Смотреть страницы где упоминается термин Деформации пластические — Виды и температуры : [c.47]    [c.13]    [c.287]    [c.70]    [c.344]    [c.232]    [c.155]    [c.70]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.25 ]



ПОИСК



Деформация пластическая

Деформация — Виды

Пластическая деформаци



© 2025 Mash-xxl.info Реклама на сайте