Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость явление

При одновременном воздействии циклически изменяющихся переменных напряжений и коррозионной среды усталостные явления могут проявляться при напряжениях более низких, чем в условиях отсутствия коррозионного воздействия в результате снижается предел усталости (явление коррозионной усталости).  [c.373]

Усталость. Явление разрушения металла под действием переменной нагрузки называется обычно усталостью. Усталостное разрушение нередко происходит при напряжении, меньшем., предела текучести и даже предела упругости. Металл, испытавший достаточно большое число переменных нагрузок, устает и разрушается.  [c.18]


Таким образом, термическая усталость—явление сложное, еще недостаточно изученное и принципиально отличается от механической малоцикловой усталости [19, 45, 46, 54, 60, 64].  [c.8]

Коррозионная усталость. Явление, приводящее к преждевременному разрушению многих ответственных деталей (корабельные гребные валы, штоки дизелей, рессоры, детали насосов и др.). В отличие от усталостного разрушения на воздухе при коррозионной усталости разрушение имеет специфический вид хрупкого излома из многих очагов. В коррозионных средах усталостные трещины возникают в начале циклического нагружения и период их развития составляет до 90% общего числа циклов до разрушения на воздухе этот период составляет 10—30 %. Кривая коррозионной усталости непрерывно снижается с увеличением числа циклов нагружений, таким образом, можно говорить только об ограниченной выносливости, которую характеризуют условным пределом выносливости, отвечающим тому циклическому напряжению, при котором образец не сломался в коррозионной среде при заданном цикле нагружений [14].  [c.254]

Теперь обратимся к взаимосвязи вязкоупругих п усталостных (имеется б виду статическая усталость) явлений в полиэтилене. В полимерных материалах эти процессы в целом имеют общую физическую основу. Они сопровождаются химическим течением, т. е. постепенным разрушением главных валентных связей цепных макромолекул. Правда, интенсивность разрушения зависит от многих факторов и, в частности, от схемы нагружения. Например, при одинаковых начальных напряжениях в условиях ползучести разрушение структуры протекает быстрее, нежели в условиях релаксации напряжения. Однако в обоих случаях вязкоупругие явления сопровождаются механическим  [c.45]

Малоцикловая усталость — явление разрушения при напряжениях выше физического предела усталости. Заданное число циклов для сталей при комнатной температуре равно обычно 5—10 млн. Если сталь под действием какого-то циклически изменяющегося напряжения не разрушилась при комнатной температуре в результате 5—10 млн. циклов, то она не разрушится и при большем числе циклов.  [c.47]

Усталость — явление разрушения металлов под действием многократно приложенных (циклических) напряжений подробно см. п. 24.  [c.29]

Основным фактором, определяющим прочность при переменных нагрузках, или так называемую вибрационную прочность, является предел усталости материала при заданном цикле периодически воздействующих нагрузок. Явление усталости — явление разрушения материала при напряжениях.  [c.113]


Разрушение поверхностей качения от усталости — явление нормальное в случае, если 230  [c.230]

Термическая усталость. Явление термической усталости металлов привлекло к себе внимание еще в 1912 г., когда Д.К. Чернов, исследуя причины растрескивания орудийных стволов, показал роль циклически изменяющихся температур в образовании трещин.  [c.189]

Упругопластическое деформирование металла приводит к возникновению в поверхностном слое заготовки остаточных напряжений, растяжения или сжатия. Напряжения растяжения снижают сопротивление усталости металла заготовки, так как приводят к по явлению микротрещин в поверхностном слое, развитие которых ускоряется действием корродирующей среды. Напряжения сжатия, напротив, повышают сопротивление усталости деталей. Неравномерная релаксация остаточных напряжений искажает геометрическую форму обработанных поверхностей, снижает точность их взаимного расположения и размеров. Релаксация напряжений, продолжающаяся в процессе эксплуатации машин, снижает их качество и надежность.  [c.268]

Переменные напряжения (растягивающие, первого рода), в том числе и знакопеременные напряжения, как известно, вызывают явление усталости металлов. Если переменные напряжения превышают, величину предела усталости металла, то через некоторое число циклов переменных нагружений, которое тем меньше, чем больше напряжения, развиваются треш,ины усталости и деталь разрушается (кривая 1 на рис. 233). Ниже определенного значения переменного напряжения (предела усталости) металл не разрушается даже при очень большом числе циклов, так как это напряжение является асимптотой для кривой усталости.  [c.336]

Механический фактор очень часто оказывает влияние на коррозию металлических конструкций в морской воде, вызывая явления коррозионной усталости, коррозионной эрозии и коррозионной кавитации.  [c.400]

Физические основы явлений усталости еще не изучены в степени, позволяющей создать стройный расчет деталей на циклическую прочность. Отсутствие основополагающих физических принципов заставляет идти по пути накопления экспериментальных данных, которые не всегда позволяют произвести достоверный расчет, тем более, что данные, получаемые различными экспериментаторами, имеют большой разброс, а зачастую, вследствие различия методики испытаний, несопоставимы и даже противоречивы. Из-за наслоения новых данных, введения поправочных коэффициентов, а также многообразия подлежащих учету факторов расчетные формулы все более усложняются.  [c.314]

ЯВЛЕНИЕ УСТАЛОСТИ МАТЕРИАЛОВ  [c.588]

Остановимся кратко на механизме явления усталости.  [c.589]

Кроме указанной гипотезы, существует и несколько другой подход к объяснению физической природы явления усталости. В частности, возникновение усталостных трещин можно объяснить исчерпанием способности кристаллических зерен сопротивляться сдвигу.  [c.590]

Весьма характерно, что при действии повторно-переменных нагрузок разрушение происходит в результате постепенного развития трещины, называемой усталостной трещиной. Термин усталость обязан своим происхождением ошибочному предположению первых исследователей этого явления о том, что под действием переменных напряжений изменяется структура металла.  [c.306]

Износостойкость — способность поверхностных слоев материала при контактировании в местах сопряжений деталей противостоять истиранию или разрушению. Считают, что основным фактором, приводящим к разрушению материала при изнашивании, является поверхностная усталость материала. Вообще явление изнашивания имеет более сложную физическую природу и зависит от многих факторов.  [c.131]

Выше уже отмечалось, что у ряда металлических материалов при определенных условиях наблюдается "физический предел выносливости" (рис.2), когда образцы, испытываемые на усталость, при определенном напряжении не разрушаются на больших базах испытания. Рассмотрим кратко основные современные точки зрения на природу этого явления.  [c.69]


Снижение температуры испытания ниже комнатной у гладких образцов приводит к повышению прочностных характеристик механических свойств (но к снижению характеристик пластичности) и пределов выносливости гладких образцов (рис. 50). При определении влияния температуры испытаний необходимо помнить о возможности фазовых превращений в сплавах и явлениях динамического возврата. Следует также нс путать влияние температуры при усталости с термической усталостью, которая имеет другую природу.  [c.82]

Более 100 лет назад при работе деталей машин, испытывающих знакопеременную нагрузку, было замечено внезапное разрушение их без заметных остаточных деформаций при напряжениях, значительно меньших предела прочности материала. Это явление было названо усталостью материала. Первые опыты по выявлению причин этих поломок были поставлены во второй половине XIX в. немецким исследователем Велером.  [c.337]

Усталостью материалов называется явление разрушения в ре-  [c.338]

Явление усталости материалов  [c.652]

Вообще же усталостью материалов (в частности, металлов) называют явление разрушения в результате постепенного накопления в них повреждений, приводящих к возникновению усталостной трещины при многократном повторении нагружений.  [c.652]

Термическая усталость — явление разрушения металлов под де1 1ствием циклических температурных напряжений, возникаюш,их в результате периодических колебанпй рабочей температуры и вызывающих температурные расширения, опасные для прочности. Термическая усталость представляет особенную опасность для тех из турбинных деталей, которые по условиям службы и конфигурации (тонкие стенки) подвергаются быстрым нагревам и охлаждениям при изменении теплового режима турбины (например, в период пуска и охлаждения). Наиболее серьезные повреждения от термической усталости возникают в деталях, испытывающих очень высокие нагревы и подвергающихся поэто.му наиболее резким колебаниям температур (пламенные трубы камер сгорания, форсажные камеры, лопаточный аппарат турбины). Образование трещин, вызываемых термической усталостью, облегчается наличием концентраторов напряжений (например, отверстий в пламенных трубах) и коррозионной среды (пара, газа).  [c.227]

Коррозионное растрескивание и коррозионная усталость. Явление коррозионного растрескивания, связанное с непрерывным одновременным действием растягивающего усилия и коррозионной среды, наблюдается лишь у некоторых материалов, причем обычно у сплавов, подвергавшихся неправильной термической обработке. Коррозионная же усталость, связанная с одновременным действием знакопеременного или пульсирующего напряжения и коррозионной среды, может иметь место почти в любом материале, подверженном коррозии. Иногда считают, что эти два вида сопряженного действия напряжения и коррозионной среды отличаются между собой по характеру получающегося излома, т. е., что коррозионное растрескивание имеет межкристаллитный характер, а разрушение от коррозионной усталости — транскристаллитный. Но это не всегда справедливо в случае магниевых сплавов, а также нержавеющих сталей в концентрированном растворе хлористого магния коррозионное растрескивание преимущественно имеет транскристаллитный характер (хотя в первом случае после некоторых реж11Мов термообработки оно может быть межкристаллитным, а во втором — на небольшой части пути трещины могут следовать по границам зерен). Коррозионная же усталость свинца, по-видимому, имеет межкристаллитный характер. Даже у стали, хотя трещины в ней преимущественно проходят внутри кристаллитов, на небольшом отрезке пути они могут идти по границам зерен это имеет место, если границы зерен находятся на пути развития трещин [1 ].  [c.644]

Валы вращаются относительно действующих на них нагрузок. Поэтому в любой точке поверхности контакта за каждый оборот вала напряжения циклически изменяются в некоторых пределах. Циклическое изменение напряжений приводит к явлению усталости поверхностных слоев материала деталей, к микроскольжению посадочных поверхностей и, как следствие, к их изнащиванию, к так называемой контактной коррозии. Натяг в соедине-  [c.59]

Валы вращаются относительно действзчощих на них нагрузок. Поэтому в любой точке поверхности контакта за каждый оборот вала напряжения циклически изменяются в некоторых пределах. Циклическое изменение напряжений приводит к явлению усталости поверхностных слоев материала деталей, к микроскольжению посадочных поверхностей и, как следствие, к ихизнапшванию, к так назьтаемой контактной коррозии. Натяг в соединении в этом случае прогрессивно уменьщается и наступает момент, когда колесо провернется относительно вала.  [c.81]

Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутетвие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Ромашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором на коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться.  [c.107]


Переменные напряжения, в том числе и знакопеременные напряжения, внвнвагт в обычных условиях явление усталости металлов.  [c.40]

Явление разрушения материала от действия переменных напряжений называют усталостью материала. Способность материала восп Зинимать многократное действие переменных напряжений без разрушения носит название выносливости, или циклической прочности.  [c.223]

Влияние тренировки. Если приложить к образцу напряжения немного ниже предела выносливости и затем постепенно повышать величину неременЕЮЙ нагрузки, то сопротивление усталости можно значительно повысить. Это явление, называемое тренировкой материала, широко используется в технике.  [c.609]

В целом создается первое впечатление, что подобного рода разрушение связано с изменением кристаллической структуры металла. Именно этим и обт.яснялось в свое время разрушение при циклических напряжениях. Описанное явление получило тогда название усталости, а направление исследований, связанных с прочностью, стало называться усталостной прочностью. В дальнейше.м точка зрения на пршшны усталостного разрушения изменилась, но сам термин сохранился.  [c.389]

Теперь расс.мотрим вопрос о том, как проявляется явление усталости в несимметричных циклах.  [c.394]

Многие элементы сварных аппаратов испытыв,ают при эксплуатащ1и циклические нагрузки, приводящие к явлению многоцикловой и малоцикловой усталости.  [c.120]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

К специфическим механизмам зарождения трещин в условиях усталости можно отнести механизм зарождения трещин, связанный с образованием концентраторов напряжений на поверхности из-за явлений. экструзий и интрузий за счет локализованного скольжения в условиях знакопеременного нагружения (рис. 27), а также другие механизмы зарождения трещин, учитывающие повторное ь нагрузки (включая знакопеременность) в условиях усталости И преимущественное течение приповерхностных слоев металла в периоде зарождения трещин. В сталях с гетерогенной структурой (в частности, у перлитных сталей) могут существовать два независимых субмикроскониче-  [c.42]

В последние годы появилось достаточно много исследований и данных о том, что в реальных условиях эксплуатации усталостное рафушение наблюдается при базах испытания больших 10 - Ю циклов, даже несмотря на натгичие горизонтального участка на кривых усталости в интервале долговечностей от 10 - 10 циклов. Это явление называют гигаусталостью. На рис. 46 представлены кривые усталости высокопрочных легированных сталей, построенные на базе испытания Ю циклов. Видно, что испытания после базы 10 приводят к появлению второй ветви ограниченной долговечности и что в этом случае зарождение усталостных трещин всегда происходит под поверх-  [c.74]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]


Смотреть страницы где упоминается термин Усталость явление : [c.339]    [c.110]    [c.34]    [c.255]   
Сопротивление материалов 1986 (1986) -- [ c.652 ]



ПОИСК



Значение явления усталости

Сопротивление материалов действию повторно-переменных напряжений Явление усталости материалов

Усталость

Явление

Явление термической усталости

Явление усталости материала

Явление усталости металлов



© 2025 Mash-xxl.info Реклама на сайте