Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Упругие характеристики

Высокие технологические характеристики подтверждены ультразвуковыми исследованиями, показавшими достаточно плотную структуру сплавов, хотя анизотропия упругих характеристик достигает 15%, свидетельствуя об анизотропии теплофизических и электромагнитных слоиста, что следует учитывать при дальнейшей обработке слитков.  [c.100]

Меченые атомы и соединения позволяют судить о поведении элементов в самых различных процессах. Радиоактивные изотопы могут быть использованы для контроля износа деталей машин и режущего инструмента, для исследования движения газов и шихтовых материалов, для оценки износа футеровки металлургических печей, для выяснения распределения серы и фосфора в сплавах, для разработки оптимальных режимов перемешивания сплавов и т, д. Меченые атомы используются для определения физико химических характеристик металлов и сплавов — упругости пара, коэффициентов диффузии и самодиффузии, диффузии металлов в окисные пленки, взаимной растворимости металлов и др.  [c.429]


При комнатной температуре метод Шора используют для сравнительной оценки твердых металлических сплавов с близкими упругими характеристиками. Кратковременность соприкосновения бойка с образцом и простота метода делают его перспективным для оценки твердости при высоких температурах (> 1400 iK), когда существующие материалы инденторов уже не позволяют проводить статические испытания.  [c.246]

Ультразвуковая сварочная головка (рис. 4.5) включает магнитострикционный преобразователь 1 из никеля или железокобальтового сплава пермендюра толщиной 0,15-0,2 мм, трансформатор упругих колебаний 2, обычно выполняемый из стали с достаточно высокими упругими характеристиками (например, сталь ЗОХГСА, 40Х и др.), ультразвуковой сварочный инструмент-волновод 6 ножевого типа. В плоскости с нулевым смещением трансформатора упругих колебаний 2 располагают диафрагму 3, с помощью которой вся акустическая система крепится к корпусу 4, выполняемому в виде охлаждающего бачка и жестко связанного с силовыми элементами сварочной установки. Диафрагма, как правило, выполняется заодно с трансформатором упругих колебаний, а ее расположение рассчитывают по специальным формулам для избежания акустических потерь. Магнитострикционный преобразователь соединяют с трансформатором упругих колебаний путем пайки твердыми припоями (ПСр-40, ПСр-45) либо склеивают эластичными термостойкими клеями. На стержнях преобразователя укладывают электрическую обмотку с рассчитанным числом витков.  [c.58]

Основные упругие константы металлов — модуль нормальной упругости Е и модуль сдвига О являются наиболее стабильными и в наименьшей степени изменяющимися механическими свойствами. Скорость деформации практически не влияет на упругие характеристики Е, О, ц. Практически мало влияет на значения величин и б и термическая обработка. Примеси, не растворимые в основном металле, также мало изменяют величину упругих свойств основного металла. Поэтому упругие свойства подобных сплавов близки к свойствам основного металла. Модуль нормальной упругости и модуль сдвига являются характеристиками данного металла и сплавов на его основе.  [c.15]

Упругие свойства обусловливают способность изделий изменять форму и размеры под действием внешних нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий. Для большинства металлов и сплавов упругость проявляется в области малых деформаций (1 %). Упругие свойства материала определяются следующими основными характеристиками модулем нормальной упругости при продольном растяжении О - модулем сдвига АГ- модулем объемной упругости при всестороннем сжатии ц - коэффициентом Пуассона.  [c.460]


Выбор в качестве материала инструмента ниобиевых сплавов для длительной работы в течение нескольких часов в высокотемпературном расплаве алюминия и его сплавов обусловлен, прежде всего, малой чувствительностью упругих характеристик этой группы сплавов к изменению температуры.  [c.481]

Структуру и свойства металлических сплавов, как уже известно, можно изменять в широких пределах с помощью термической обработки особенно эффективна термическая обработка для стали. Однако не все свойства изменяются при такой обработке. Одни (структурно чувствительные свойства) зависят от структуры металла (это большинство свойств), и, следовательно, изменяются при термической обработке, другие (структурно нечувствительные свойства) практически не зависят от структуры. К последним относятся характеристики жесткости (модуль нормальной упругости Е, модуль сдвига С).  [c.180]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]

Предварительные замечания. В предыдущих параграфах главы обсуж-дспы многие общие особенности структуры и свойств металлов и сплавов. У отдельных металлов или сплавов имеется ряд специфических свойств, знать которые необходимо инженеру, занимающемуся проблемой надежности, при проектировании тех или иных конструкций, В настоящем параграфе остановимся па некоторых особенностях наиболее важных для техники металлов и сплавов. К их числу относятся железоуглеродистые сплавы (стали, чугуны), алюминиевые, магниевые, сверхлегкие, медные, никелевые сплавы, титан и его сплавы, цирконий и его сплавы, бериллий, тугоплавкие металлы и их жаропрочные сплавы. Некоторые механические и упругие характеристики семи чистых металлов приведены в табл. 4.11.  [c.318]

Наблюдаемое влияние состава сплава ВТ14 на величину установившегося потенциала при одинаковых коэффициентах перегрузки можно, по-видимому, объяснить тем, что пассивная пленка содержит атомы легирующего компонента, влияющего на ее защитные свойства. Алюминий - основной легирующий элемент титановых сплавов повышая прочность, сопротивления сплавов ползучести, а также их упругие характеристики й не уменьшая резко пластичности и вязкости, он снижает коррозионную стойкость титана, особенно при неравномерном распределении в объеме металла.  [c.75]

НЛ (ЭИ996) 2,1 — 2,5 Ве N1 остальное Сплав дисперсионнотвердеющий коррозионностойкий с высокими упругими характеристиками, предел прочности 160- -190 МПа, модуль нормальной упругости 20 000—21 000 МПа, ударное электросопротивление 0 ЭВ мкОм м Для токоведущих и силовых упругих чувствительных элементов, работающих при температу ре до 300 °С  [c.320]

Рассмотрим ползучесть жестко защемленных сферических оболочек, выполненных из сплава Д16АТ, толщиной /1=1 мм, радиусом в плане а=125 мм, высотой подъема /=2 мм, подвергнутых после изготовления короткому отжигу. Такая термообработка не оказывает значительного влияния на упругие характеристики материала, однако существенно сказывается на параметрах ползучести. Оболочки находятся в равномерном основном температурном поле 7 =200°С в естественном напряженном состоянии.  [c.72]

Пример. Поршень дизеля, выполненный из алюминиевого сплава, имеет осесимметричные форму и температурное поле (фиг. 37), Учиты-вается зависимость упругих характеристик материала от температуры. Эквивалентная электрическая цепь выполнена в цилиндрической системе координат и включает 70 узлов [2]. Рассматриваются две группы фиктивных сил по осям г и 6, На фиг. 38 показаны полученные с помощью модели перемещения и подсчитанные по ним через относительные деформации — напряжения.  [c.608]


Дальнейшее повышение экономической эффективности использования топлива, в частности в реакторах ВВЭР, с обеспечением среднего выгорания до 55...60 МВт-сут/кг урана и 5-6-летних кампаний при достижении флюенса нейтронов (Ф) до (2...5) 10 н/см и с внедрением режима маневрирования мощностью в реакторах напрямую связаны с необходимостью увеличения ресурсных характеристик циркониевых изделий для использования их в составе ТВС (оболочки твэлов, дис-танционирующие решетки, направляющие и центральные каналы). Дяя новых условий эксплуатации бинарные сплавы с ниобием не имеют необходимого запаса свойств, особенно по сопротивлению деформированию в результате радиационных ползучести и роста, а также упругим характеристикам для обеспечения размерной стабильности и целостности твэлов и ТВС (распухание, удлинение, искривление).  [c.364]

Другой эффект, который отсутствует или не имеет значения при термоциклировании монолитных материалов, но должен приниматься во внимание разработчиками эвтектических композиций — внутренние напряжения, которые возникают вследствие различия температурных коэффициентов линейного расширения эвтектических фаз. Эти напряжения можно оценить, задаваясь упругими характеристиками фаз они пропорциональны произведению разницы коэффициентов линейного расширения и интервала температур (Аа ДГ), которые были названы Лейзло [36] деформационным потенциалом мозаичности. Остаточные напряжения могут превысить предел текучести пластичной фазы и вызвать достаточно большую пластическую деформацию, приводящую к повреждению материала при циклической термической усталости [19]. Кроме того, остаточные напрянсения зависят от фазовых превращений, протекающих в нестабилизированных сплавах на основе железа или 1<обальта.  [c.154]

Сделанные упрощения не справедливы для многофазного сплава типа механической смеси, состоящего из разнородных кристаллических зерен с кубической решеткой или из разнородных упругоизотропных зерен, имеющих различные упругие характеристики. Несмотря на то, что в таком поликристалле каждое зерно в отдельности изотропно по отношению к тепловому расширению и всестороннему равномерному растяжению или сжатию, модули всестороннего сжатия поликристалла и отдельных зерен различны, а избыточная температурная деформация зерен Лей =7 О. Поэтому в (2.69)—(2.72) не удается перейти от тензорных компонентов напряжений и деформаций к девнаторным компонентам, т. е. на неупругое деформирование таких поликристаллов в общем случае должны повлиять и гидростатическая составляющая тензора осредненных напряжений, и даже однородное по объему изменение температуры. Влияние этих факторов не учитывается в распространенных феноменологических теориях неупругого деформирования материала (см. 1.5).  [c.104]

В общем случае задача имеет много параметров (различные механические характеристики материалов, давления на линии раздела сред и на граничных контурах, натяг между кольцами, геометрические размеры колец и трещин). Поэтому для численного анализа задачи выберем упругие характеристики и размеры колец равными соответственно о=6,28х10 МПа, хо=0,22 (твердый сплав ВК6), i = 2,06xl0 МПа, xi=0,28 (среднеуглеродистая сталь) и Ro=l,5 мм, Ri=7,75 мм, / 2=20,0 мм. Будем считать, что  [c.216]

Числовые результаты получены для шарнирно опертой трехслойной круговой пластины, защитный слой которой выполнен из кордиерита, заполнитель —фторопласт, несущий слой — сплав Д16Т. Теплофизические и упругие характеристики материалов приведены в 1.11. Трансцендентное уравнение для собственных чисел (7.12) численно исследовалось при /гз = IO/12 = 2O/11 = 0,05. Первые 20 корней, вычисленные с точностью до 0,001, сведены в табл. 7.3.  [c.434]

При дополнительном учете вязкоупругих свойств дюралюминия и фторопласта кривая 2 практически не изменяет своего вида и положения. Это объясняется малой вязкостью металла при комнатной температуре. Однако если рассмотреть гипотетический материал с упругими характеристиками сплава Д16Т и ядром релаксации фторопласта в качестве материала несуш их слоев, то в результате получим кривую 3, соответствуюш ую случаю вязкоупругопластичности. Вязкость здесь приводит к уменьшению модуля амплитуды колебаний А и областей пластических деформаций в слоях пластины.  [c.452]

У ферромагнитных металлов наблюдаются аномалии упругих характеристик, зависящие от степени намагниченности в состоянии магнитного насыщения модули упругости меньше. Изменение модуля нормальной упругости в зависимости от намагниченности (так называемой A эффект) растет с ростом магни-тострикции (уменьшение модуля Е может достигать 40% его первоначального значения). В некоторых сплавах эти аномалии могут быть использованы для получения элинваров (сплавов, практически не изменяющих своего модуля упругости в определенном интервале температур).  [c.101]

Численные результаты получены для шарнирно опертой трехслойной круговой пластины, заш,итный слой которой выполнен из кордиерита, заполнитель - фторопласт, песуш ий слой — сплав Д16Т. Теплофизические и упругие характеристики указанных материалов приведены в гл. 11.  [c.296]

Наиболее распространенным конструкционным композитом с металлической матрицей является бороалюми-вий. Материал ВКА-1 этой системы более чем в 2 раза превосходит по прочности при комнатной температуре конструкционные алюминиевые сплавы, по упругим характеристикам — в 3,5 раза. При повышенных температурах преимущества ВКА-1 еще более очевидны табл. 4.14).  [c.112]

При полиморфных превращениях значения модулей меняются незначительно. Это объясняется тем, что природа атомов при этом не меняется, а изменение объема и связанное с этим изменение числа атомов, приходящегося на единицу объема в кристаллической решетке, не превышает нескольких процентов. Значения модулей упругости и сдвига, определенные по разным направле-нням в монокристалле, существенно различаются. Эти различия связаны с разной плотностью упаковки кристаллических плоскостей. Легирование металла, т. е. введение в него других элементов, сказывается на упругих характеристиках пропорционально доле введенных атомов, поэтому модули упругости и сдвига малолегиро-ванных сплавов практически равны модулям чистых металлов, являющихся основами этих сплавов.  [c.39]


НЛ 300 Для токоведущих и силовых чувствительных элементов. Сплав дисперсионно-твердеющий, коррозионно-стойкий, с высокими упругими характеристиками и низким удельным электросопротивлением  [c.642]

В ряде случаев после низкотемпературного нагрева деформированных металлов и сплавов прочностные характеристики (твердость, предел упругости, предел текучести, ширина линий на рентгенограмме и др.) не снижаются, а несколько поднимаются. Такой эффект установлен на железе, хромоникелевых малоуглеродистых сталях, латунях, бронзах и др. Вероятно, это связано со своеобразным характером перераспределения напряжений и дислокаций прн полигонизации. В сплавах, склонных к образованию при нагреве атомных сегрегаций  [c.745]

Сочетание высоких упругих характеристик сплава Н35ХМВ с низким температурным коэффициентом моду.1я упругости и малым коэффициентом расширения определяется условиями выплавки сплава Н35Х.МВ и соблюдением точных режимов термомеханической обработки.  [c.792]

При расчете алюминиевых конструкций принимаются осредНенные значени основных упругих характеристик алюминиевых сплавов модуль продольной упругости —710000. кг1.см , модуль сдвига — 270 ООО кг/сл , коэффициент Пуассона — 0,3. Вводимое в расчет рс-редненное значение объемнрго веса этих сплавов —  [c.576]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

ИССЛЕДОВАНИЕ ВЛИНИЯ ДЕФЕКТОВ НА УПРУГО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕТАЛЛИЧЕСКИХ СПЛАВОВ И ИХ ПОВЕДЕНИЯ В ПРОЦЕССЕ ДЕФОРМИРОВАНИЯ  [c.49]

Основными требованиями, предъявляемыми к конструкционным металлам и сплавам являются прочность и пластичность, высокие упругость и износостойкость, жаростойкость и жаропрочность, стойкость к криогенным температурам, высокая коррозионная стойкость, стойкость к тепловым ударам и перегрузкам, технологичность, стойкость к радиационому облучению, экономичность. Непременным требованием, предъявляемым ко всем авиационным материалам, является их высокий коэффициент качества, т. е. отношение величины данной характеристики материала к плотности.  [c.261]

Сопротивление металлов или сплавов микропластической деформации принято характеризовать величиной предела упругости, т, е, напряжением, которое возникает от приложенной внешней нагрузки и вызывает минимальную относительную пластическую деформацию, В ряде случаев эта характеристика является более чувствительной к объемному или поверхностному структурному состоянию металлов или сплавов, чем другие механические характеристики, например предел текучести. Именно на ранних стадиях деформирования могут проявляться особенности строения микрообъ-  [c.38]

Допустимая степень взаимодействия компонентов в системах третьего класса зависит от многих других характеристик композита. Одна из важнейших характеристик — сопротивление распространению каждого конца трещины в реакционной зоне, поскольку оно определяет величину раскрытия трещины, а следовательно, и создаваемую трещинами концентрацию напряжений. Согласно всем имеющимся данным, допустимая длина трещины в системе титан — бор увеличивается с ростом предела упругости титановой матрицы. Однако если волокно не абсолютно упруго, а обладает определенной пластичностью, то критическая длина трещины может быть много больше. Значит, много больше может быть и толщина реакционной зоны. Соответствующий пример, относящийся к системе псевдопервого класса, имеется в работе Джонса [23], который исследовал композиты алюминиевый сплав 2024 — нержавеющая сталь. Хотя на большинстве образцов взаимодействия не наблюдалось, в нескольких случаях на малоугловом шлифе была обнаружена третья фаза вокруг волокон. Один из таких образцов, где хорошо видна образующаяся при реакции фаза, изображен на рис. 5. Фазу пересекают многочисленные, регулярно располо-  [c.22]

На рис. 16, а [14] показаны значения прочности и модуля упругости слоистого композиционного материала бор — алюминий различных схем армирования. Для сравнения на том же графике приведены соответствующие характеристики алюминиевого сплава 2219. Как видно, в любой точке композиционный материал по свойствам превосходит традиционный сплав. Прочность при растяжении и модуль упругости одноосноармированного слоистого материала, определенные при испытаниях в осевом (продольном) и трансверсальном (поперечном) направлениях, представлены точками А VI В соответственно. Точками С VI О представлены свойства композиционного материала со схемами армирования 0° (50), 45° (50), 90° (0) и 0° (25), 45° (50), 90° (25) соответственно (в скобках приведено количество слоев в %, имеющих указанную ориентацию). Композициоивык материал последней из приведен-  [c.59]


Смотреть страницы где упоминается термин Сплавы Упругие характеристики : [c.50]    [c.239]    [c.280]    [c.79]    [c.263]    [c.229]    [c.123]    [c.344]    [c.41]    [c.41]    [c.161]    [c.168]    [c.309]    [c.115]    [c.167]    [c.17]    [c.117]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.166 ]



ПОИСК



Упругость характеристики

ХАРАКТЕРИСТИКИ УПРУГИХ СВОЙСТВ МЕТАЛЛОВ И СПЛАВОВ ПРИ ГОРЯЧЕЙ И ХОЛОДНОЙ ОБРАБОТКЕ ДАВЛЕНИЕМ

Характеристика упругая

Характеристики сплава



© 2025 Mash-xxl.info Реклама на сайте