Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы исследования структуры поверхностных слоев

Методы исследования структуры поверхностных слоев  [c.159]

Книга посвящена исследованию особенностей пластической деформации поликристаллических материалов физическими методами. Изложены результаты экспериментальных исследований формирования структуры и субструктуры пластически деформированных материалов. Особое внимание уделяется исследованию структуры поверхностных слоев пластически деформированных материалов и структуры порошковых материалов.  [c.128]


Появление высокоэффективных физических методов исследования структуры и состава поверхностных слоев твердых. тел, в том числе непосредственно в процессе фрикционного взаимодействия, позволило в последние годы получить принципиальные результаты, которые можно использовать при описании изнашивания как динамического комплекса процессов разрушения исходных структур, формирования новых структур и их разрушения.  [c.37]

В книге приведены результаты исследований структуры поверхностей трения в условиях избирательного переноса. Рассмотрены закономерности структурных изменений при объемном и поверхностном пластическом деформировании. Проанализированы возможности исследования структуры физическими методами. Изложен специальный рентгенографический метод анализа изменений структуры поверхностных слоев. Рассмотрены диффузионные процессы при трении них влияние на износостойкость. Выявлены структурные критерии оценки состояния поверхностей трения.  [c.2]

В работе [39] методом рентгеноструктурного анализа изучали изменение кристаллической структуры технически чистого железа при упрочнении в инактивной й поверхностно-активной средах. Для упрочнения применяли пластическое деформирование статическое сжатие, прокатку, растяжение, однократную накатку. Показано, что микроискажения кристаллической решетки металла не чувствительны к введению ПАВ. В то же время в работе [36] указано, что исследованиями изменений структуры поверхностного слоя технически чистого железа при трении в разных смазочных средах установлены большие микроискажения решетки кристалла в активной среде по сравнению с соответствующими значениями в-инактивной среде. Выявлено незначительное различие твердости после испытаний в активной и инактивной средах. При этом в вазелиновом масле средние значения размеров блоков когерентного рассеяния более высокие, чем в активной среде. Кривые изменений микроискажений кристаллической решетки и изменений микротвердости в обеих средах подобны. Кроме того, отмечено, что в присутствии поверхностно-активной среды шероховатость поверхности образца резко уменьшается. Сила трения при низких давлениях почти в 2 раза меньше в активной среде при очень высоких давлениях различие в силах трения для избранных сред незначительно.  [c.47]


При дальнейшем использовании этого метода для исследования прочностных свойств стекол, кристаллов, стеклокристаллических материалов [60—65] и других хрупких материалов были внесены некоторые уточнения в методику, ранее предложенную Кузнецовым. Так, например, для получения более точных значений поверхностных энергий стекол, значительно отличающихся друг от друга по твердости, необходимо соблюдать следующие условия. 1. Микротвердость материала шлифующего порошка должна быть в 1.5—2 раза больше микротвердости самого твердого из шлифуемых стекол [60]. 2. Определение потерь в весе после шлифовки исследуемых образцов производить только в том случае, когда структура поверхностного слоя шлифуемых образцов будет сохраняться в течение всего опыта, для этого перед опытом с целью измерения поверхностной энергии необходимо предварительно шлифовать образцы тем же абразивным порошком до тех пор, пока не будет снят слой толщиной, равной одному-двум диаметрам абразивных зерен, — порядка 0.06—0.40 мм.  [c.70]

По структуре поверхности слоя можно судить не только о максимальных температурах на поверхности, но и о характере распределения температур ка поверхности трения. Например, поверхностный латунный слой (фиг. 13), вероятно, имел температуру плавления только в отдельных локальных местах, так как структура поверхностного слоя неоднородна. Во многих других местах поверхностный латунный слой имеет структуру мелкозернистой деформированной латуни это указывает на то, что в этих местах температура еще не достигла температуры плавления (фиг. 14). Таким методом можно определить только интервал температур, вызывающих изменение структуры. Исследование процессов трения, протекающих в условиях более низких температур, не дающих фазовых или структурных изменений, требует применения других методов. Использование так называемых свидетелей вследствии иных их теплофизических свойств не приводит к заметному уточнению при определении температуры.  [c.89]

На основе дальнейшего изучения качества поверхностей деталей машин должна быть разработана необходимая конструкторам методика установления оптимального качества поверхности по всем его показателям (шероховатость поверхности, микротвердость и структура поверхностного слоя, остаточные напряжения в поверхностном слое) для заданных конкретных условий работы сопряженных деталей. Технологи должны обеспечивать целенаправленное формирование поверхностного слоя с заданными конструктором изделия стабильными свойствами методами технологического воздействия в процессе обработки. Нерешенной задачей остается разработка быстрых и эффективных методов производственной оценки качества поверхности по всем его основным показателям. Представляет интерес исследование технологического наследования свойств исходной заготовки готовой деталью и определение закономерностей  [c.411]

При изучении способов повышения износостойкости существенное значение имеет использование комплексного метода исследования, при котором результаты испытаний на трение и износ, служащие критерием эффективности изучаемого способа, сопоставляются с данными, характеризующими состав и структуру поверхностных слоев металла. Такое сопоставление позволяет определить, какие именно изменения в поверхностных слоях металла дают наилучший эффект в части повышения износостойкости, что является необходимым условием правильного выбора и разработки методов борьбы с износом в машинах.  [c.168]

Как показано выше (рис. 14), применение метода послойного химического анализа углерода в стали или микроскопическое исследование изменения структуры на начальных стадиях водородной коррозии оказывается недостаточно эффективным. В связи с этим для изучения изменения содержания углерода в поверхностных слоях стали в начальной стадии ее взаимодействия с водородом был использован метод радиоактивных изотопов.  [c.141]


Появление новых методов и средств определения структуры, строения и состава поверхностных слоев, возникающих в процессе трения, позволяет расширить научные и прикладные исследования в области граничной смазки, химико-физических свойств присадок к маслам. Важным является получение тонких поверхностных пленок на поверхностях трения под влиянием контактных давлений, температур, временного фактора, химического взаимодействия материалов и смазочных сред, при воздействии окружающей среды. На всех стадиях формирования граничных слоев решающее влияние имеют адсорбционные процессы, кинетика образования и разрушения поверхностных пленок. Целесообразно получить реологические уравнения для граничных смазочных слоев при высоких давлениях, скоростях сдвига, температурах с учетом анизотропии свойств.  [c.197]

Структура и геометрия поверхности деталей определяются природой металла, технологией изготовления и режимами обработки. Степень взаимосвязи этих факторов и их влияние на формирование свойств машиностроительных деталей в настоящее время изучены недостаточно. Сравнительное исследование состояния поверхностей (поверхностного слоя) деталей, полученных различными методами, позволяет оценить их эффективность в формировании качественной поверхности.  [c.115]

Датчик, основанный на методе эффекта магнитных шумов- зависимости доменной структуры ферромагнетиков от степени намагниченности и уровня действующих механических напряжений, имеет две катушки возбуждающую и приемную. Расшифровка зависимостей, характеризующих магнитные шумы в материале от уровня напряжений, позволяет определить их величину в поверхностном слое. Поскольку датчики можно изготовить сравнительно небольшими, напряжение определяется на участках с базой порядка 1 мм. Последние исследования показали, что с помощью таких датчиков можно одновременно при одном измерении фиксировать не только уровень напряжений, но и значения главных напряжений и их ориентацию. Для этого исследуются многие гармоники колебательных процессов, каждая из которых по-своему зависит от главных напряжений.  [c.267]

Структуру сплавов, прошедших термическую обработку, проверяют как в поверхностных, так и в более глубоких слоях детали, в соответствии с чем и изготовляют образцы для микроанализа. При оценке свойств сплавов, находящихся в неравновесном состоянии, необходимо, наряду с микроанализом, использовать и другие методы исследования и, прежде всего, измерение твердости.  [c.28]

Наибольший интерес представляют два основных аспекта строения поверхностных слоев химический состав и характер упорядочения атомов и молекул. При этом под термином поверхностный слой могут подразумеваться совершенно различные объекты — от нескольких атомарных слоев при исследовании адсорбции и адгезии, до десятков и сотен микрометров при анализе деформационных и диффузионных процессов, прогнозировании износостойкости. Охватить весь диапазон анализируемых глубин возможно либо с использованием специальных методов препарирования образцов (разрушающие методы анализа), либо используя комплекс методов исследования. К наиболее распространенным методам препарирования относятся создание поперечного или косого шлифа, послойный анализ с применением механического, химического, электролитического или ионного полирования. Важнейшим недостатком перечисленных методов является возмущающее влияние обработки на структуру поверхности. В результате возможно перераспределение дислокационной плотности, преимущественный унос тех или иных компонентов материалов сложного химического состава, развитие поверхностной сегрегации. Нередко обработка приводит к недопустимо сильному загрязнению изучаемой поверхности.  [c.160]

В статье изложены результаты исследования изменения структурного состояния сплавов системы Ре—Сг—Мп в процессе окисления при температуре 1000° С. Структура сплавов изучалась при комнатной температуре рентгеновским и металлографическим методами, а при температуре 1000° С методом высокотемпературной металлографии на установке ИМАШ-5С-65. Уточнен фазовый состав исследованных сплавов перед окислением. Показано, что изменение состава сплава в поверхностном слое в результате окисления вызывает изменение структуры сплава под окалиной. В сплавах с а у-я у-фазами обнаружен слой только а-фазы, Установлено, что толщина поверхностного слоя увеличивается со временем приблизительно по параболическому закону.  [c.166]

В работе [41 ] рассмотрены результаты экспериментов по исследованию влияния инактивной (вазелиновое масло) и активной (вазелиновое масло + 2 % олеиновой кислоты) смазок на дислокационную структуру и упрочнение некоторых металлов с ГЦК решеткой (коррозионно-стойкая сталь и алюминий) при трении. По сравнению с сухим трением инактивная среда не влияет на дислокационную структуру исследуемых металлов. Исследование методами электронной микроскопии и микротвердости показало, что активная среда значительно упрочняет поверхностный слой металла по сравнению с трением в неактивной смазочной среде. При некотором уровне упрочнения в активной среде происходит более интенсивное разупрочнение, что объясняется проникновением молекул ПАВ в трещины поверхностного слоя и разрушением. Кроме того, при трении в среде ПАВ уменьшается глубина наклепанного слоя, так как более интенсивное упрочнение поверхностного слоя оказывает экранирующее действие для распространения в глубь металла пластической деформации.  [c.46]


Несмотря на большой объем информации, которую можно извлечь из анализа реплик, совершенно очевидно, что метод реплик не позволяет исследовать структуру металла. В 1956 г. удалось произвести утонение образца коррозионно-стойкой стали для прямого просмотра в просвечивающем электронном микроскопе с этого времени большую часть исследований металлов проводят на фольге, получаемой утонением массивных образцов. Такие объекты изготовляют разными путями. Наиболее распространен метод электролитического полирования ( метод окна ). Различные методы приготовления объекта исследований требуют нежелательных механических, химических воздействий, вызывающих изменение структуры. При этом изменения особенно существенны в случае наличия градиентов по глубине металла, вызванных условиями испытания. При трении, как показано ниже (см. гл. IV), плотность дислокаций, например, по толщине поверхностных слоев от О до 3 мкм может изменяться на несколько порядков. Приготовление тонкой фольги в этом случае неизбежно приведет не только к количественному, но, возможно, и к качественному изменению характера структуры анализируемого объекта. Электронно-микроскопическое исследование, таким образом, не будет характеризовать состояние исследуемого образца (детали).  [c.62]

Метод электронной дифракции представляет интерес для расшифровки структур, особенно при наличии высокодисперсных фаз (формирующихся карбидов, различных новообразований), линии которых невозможно измерить, а иногда и обнаружить при рентгенографическом анализе. Электронографию широко используют для изучения поверхностных слоев толщиной несколько нанометров, а также специально приготовленных тонких пленок. Так, изучение оксидных пленок, возникающих на металле в начальной стадии окисления, дало богатый материал для теории процесса окисления, явления пассивирования металлов. В вопросах исследования аморфных слоев металла при полировании, трении, тонкопленочных объектов методы электронной дифракции незаменимы.  [c.65]

Для получения информации о процессах, происходящих в поверхностных слоях металлов и сплавов при трении, используют ряд методов исследования, связанных как с оценкой физического состояния поверхностей трения, так и с изменением структуры и свойств по глубине поверхностных слоев. Рассмотрим очень кратко лишь некоторые из них.  [c.87]

Методы решения диффузионных задач многообразны в зависимости от конкретных условий исследовательской практики. Они подробно изложены в работе [18] и относятся в основном объемным изменениям в структуре металлов и сплавов. Исследования диффузионных процессов при трении связаны со значительными экспериментальными и теоретическими трудностями. Последние обусловлены тем обстоятельством, что структура металлических систем формируется в результате сложной совокупности процессов, происходящих при трении и вызванных высоким уровнем напряжений, влиянием окружающей среды (см. гл. 4), значительными объемными и поверхностными температурами и температурными градиентами. Многочисленные экспериментальные данные показывают, что процессы структурных изменений при трении локализуются в тонких поверхностных слоях, и активная зона может быть отнесена к тонкопленочным объектам. Масштабный эффект сопровождается многообразием отклонений физических и физико-химических свойств системы от монолитного состояния для сплавов наиболее характерной особенностью является значительное изменение пределов растворимости. Кроме того, структура поверхностей трения является диссипативной, т. е. образующейся и поддерживаемой в нелинейной системе с большим числом степеней свободы с помощью внешнего источника энергии [71, 109]. Вторичная структура (диссипативная структура, формирующаяся при трении) — результат неустойчивости, образуется вследствие флуктуаций мерой скорости ее образования является производство избыточной энтропии. Структура поверхности трения — это новое состояние вещества вдали от равновесия и неустойчивости, порожденное потоком свободной энергии и приводящее к новым типам организации материи за  [c.139]

Структуру сплавов, подвергающихся термической обработке, проверяют в поверхностных, а также в более глубоких слоях детали. При оценке свойств сплавов, находящихся в неравновесном состоянии, необходимо наряду с микроанализом использовать также и другие методы исследования и прежде всего измерение твердости, которое можно выполнить на том же микрошлифе. Необходимо также знать химический состав сплава (содержание основных компонентов и примесей).  [c.48]

Сочетание результатов рентгеноструктурного и электронографического анализов дало полную картину фазового состава поверхностных слоев и, в сопоставлении с результатами испытаний на трение и износ, позволило уточнить наши представления о структуре поверхностных слоев, получающихся при различных видах обработки, и о влиянии разных соединений на износостойкость металла. Испытания на трение и износ проводились на четырехроликовой машине трения, торцовых машинах трения, машине трения Амслера и других. Подробности этих испытаний изложены в других статьях [4, 5], а ниже приводятся только отдельные результаты испытаний на четырехроликовой машине трения при 50, 100 и 200 ке, являющиеся особенно наглядным критерием. При этом из большого числа методов сульфидирования, исследованных в Ниихиммаше, в приводимую ниже таблицу включены наболее характерные, позволяющие сопоставить значение разных структурных составляющих. Для правильной оценки принятого критерия надо иметь в виду, что покрытия, при испытании которых диаметр лунки износа достигает 2 мм при давлении 50 ке, являются совершенно не годными покрытия, у которых лунка порядка 2 мм получается при 100 /сг, —относительно хорошими, а те, у которых такой износ получается при 200 ке, — очень хорошими.  [c.171]

С помощью разработанной методики скользящего пучка рентгеновских лучей получены важные для практики сведения о структурном состоянии поверхностных слоев металлических материалов, обработанных технологическими методами, в частности, шлифованием и при прокатке. В процессе шлифования произошел распад двухфазного сплава, так называемое альфирование. которое привело к уменьшению иа два порядка числа циклов до разрушения авиационных лопаток. При этом обычно контролируемые свойства сплава не показывали отклонений от нормы. Лишь анализ тонкого поверхностного слоя, составляющего доли микрометра, выявил изменение структуры, которое в процессе эксплуатации лопаток привело к их катастрофическому износу [3]. Аналогичным образом была вскрыта причина разрушения высокопрочной стали при трении в паре с относительно мягкой оловянистой бронзой [1], При исследовании тонкого поверхностного слоя бронзы обнаружено наличие интерметаллической фазы (Сиз18пв), вызванное диффузионным притоком атомов олова к поверхности. Образование в приповерхностной зоне бронзы новой фазы с высокой твердостью резко изменило механизм трения взаимодействующих материалов и привело к увеличению на несколько порядков интенсивности износа стали, сопряженной с бронзой.  [c.46]


Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

При изучении механизмов пластической деформации методом исследования изменения дислокационной структур )1 был выявлен процесс текстурирования монокристаллов кремния и ниобия. Методом прямого наблюдения дислокационной структуры было (юказано, что при скольжении индентора в поверхностных слоях стали XI8H9T достигается в1>1сокая плотность дислокаций с образованием полос скольжения в виде пакетов. При этом отчетливо наблюдается ориентировка пакетов в направлении, перпендикулярном действию тангенциальных сил [29].  [c.45]

Механизм образования частиц износа при возвратно-поступательном движении был сформулирован в [160]. Исследования проводились на образцах из низкоуглеродистой стали (0,08% С) методом просвечивающей электронной микроскопии. Установлено, что в результате пластической деформации в поверхностных слоях формируется развитая ячеистая структура, ориентированная вдоль направления трения. При приближении к поверхности размеры ячеек уменьшаются, а степень разориептировки между ними возрастает. Формирование ячеек в поверхностных слоях металла обусловливает присносабливаемость его структуры к условиям трения. Кроме того, размер ячеек влияет на предел текучести исследуемого материа.ла в соответствии с уравнением Холла—Петча.  [c.101]

Периодический характер структурных изменений, впервые выявленный в работе [76], затем был зафиксирован в целом ряде работ для различных условий трения [26, 77, 78]. Большинство авторов связывают такой вид зависимости с периодическим разрушением поверхностного слоя и отмечают зависимость времени (числа циклов, пути трения), за которое материал проходит всю стадию от упрочнения до разрушения, от внешних условий трения. Проявление периодического характера процесса обнаружено но изменению микро- [76] и макронапряжений [77], электросопротивления [103], величины блоков [78], микротвердости [26, 122]. Соответственно и внешние характеристики трения, такие, как коэффициент трения и интенсивность износа, также могут периодически изменяться. Для тяжелых условий трения периодический характер изменения износа может быть выявлен обычным весовым методом [26, 136], для более легких режимов выявление периодического характера изменения силы трения стало возможным только путем прецизионных измерений [79]. Сказанное выше в равной степени относится как к основному материалу (большинство исследований выполнено на сталях), так и к пленкам вторичных структур, обра-зуюш ихся в процессе трения. При тяжелых режимах работы, связанных с повышением температуры на контакте (например, при нестационарном тепловом нагружении), наблюдается периодическое изменение структуры, обусловленное не только действием повторного циклического нагружения, но и циклическим изменением температуры трения, приводяш им к фазовым превращениям на контакте, которые также носят циклический характер. В результате наблюдается четко выраженная периодичность изменения износа от числа торможения [136].  [c.104]

Но само по себе применение электротехнологии, как и любого технологического процесса, автоматически не обеспечивает получения высокого качества изделий. Следует строжайшим образом соблюдать технологические режимы. Кроме того, при оценке качества изделий следует учитывать факторы, влияющие на их прочностные свойства. Например, электроэрозионная обработка с близким к нулю износом электрода-инструмента, разрабатываемая в НИИТМАШ МЭТП, как и при обычных методах электроэрозион-ной обработки, хотя и в меньшей степени, связана с тепловым воздействием разрядов. В малых областях поверхности протекают микрометаллургические процессы. Специфика этих процессов обуславливается высокими температурами, огромными скоростями нагревания и охлаждения микрообъемов, присутствием химически активной среды. Проведенные в ряде организаций исследования поверхностного слоя металла после обработки показывают, что он имеет структуру литья. В процессе обработки происходит химическое взаимодействие обрабатываемого материала и межэлектродной среды. Результатом его может явиться насыщение расплавленного металла элементами из среды или же, напротив, выгорание из него некоторых элементов. Характер взаимодействия определяется химическим составом металла и продуктами пиролиза рабочей среды.  [c.298]

Выполняя условия деформационного подобия при исследовании плоского напряженного состояния составных плоских тел оптическим методом [56], сохраняем равенство коэффициентов подобия для натуры и модели. Р1апример, во взятом натурном литом чугунном образце с орнаментом модуль упругости поверхностного слоя, имеющего мелкокристаллическую структуру, i H=l,55-10 кгс/мм , а нил<него с крупнокристаллической структурой — н = ЫО кгс/мм . На модели необходимо выдержать равенство отношения модулей упругости слоев из оптически активного материала при выполнении геометрического и силового подобия (рис. 21).  [c.32]

ДЕЦИМЕТРОВЫЕ ВОЛНЫ — радиоволны с длиной волны от 1 до 0,1 м (диапазон частот 300—3000 МГц). Возможность создания направленных антенн относительно небольших геом. размеров, прозрачность ионосферы и тропосферы для Д. в., зависимость коэф. отражения этих воли земной поверхностью от ее структуры являются основой широкого использования диапазона Д. в. в тропосферных радиорелейных линиях, телевидении, линиях космич. связи, дистанц. методах исследования поверхностных слоев Земли (с помощью радиолокации или собственного теплового радиоизлучения Земли), в радиоастрономии при исследованиях галактич. п внегалактич. объектов (распределённое радиоизлучение Галактики, радиоизлучение звёзд, остатков сверхновых, радиогалактик, квазаров и др.).  [c.602]

С) на поверхности происходит пластическое течение, в то время как сердцевина образца находится в упругом состоянии. При разгрузке образца на поверхности образуются остаточные напряжения сжатия. Изучение дислокационной структуры алюминиевого сплава 2024 показало 12931, что в первом полуцикле нагружения в приповерхностном слое глубиной до 100 мкм образуется структура с повышенной плотностью дислокаций. При дальнейшем циклическом нагружении растяжением — сжатием происходит выравнивание плотности дислокаций в приповерхностных слоях и внутренних объемах. Исследование I294J монокристаллов алюминия и поликристаллов алюминиевого сплава рентгеноструктурным методом с применением двухкристально-го дифрактометра и топографии по Бергу — Баррету для визуализации дефектов кристаллической решетки показало, что после усталостных испытаний при растяжении—сжатии поверхностный слой имеет более высокую плотность дислокаций, чем в основном металле.  [c.96]

Структуру пленки изучали [37] с помощью специально разработанного метода скользящего пучка рентгеновских лучей. Луч направляли к поверхности под малым углом (не более 1°), что позволяло исследовать поверхностные слои толщиной 0,1—0,01 мкм. Исследования показали, что верхний слой пленки имеет значительные структурные изменения по сравнению с нижележащими слоями. З а критерий структурных изменений принимали истинную (физическую) ширину линий на рентгенограммах р, которая для чистых металлов и равновесных твердых растворов является результирующей средней величины блоков и дисперсий упругой деформации кристаллической решетки (микроискажеьий) и служит характеристикой плотности содержащихся в металле дислокаций.  [c.281]

Заканчивая рассмотрение основных закономерностей зарождения и размножения дислокаций вблизи свободной поверхности, следует отметить, что они могут быть обусловлены также особенностями атомно-электронной структуры и динамики кристаллической решетки в поверхностных слоях твердого тела [309-312], [380-413] и, как следствие этого, влиянием указанньгх факторов на особенности изменения соответствующих термодинамических параметров с учетом определенного удельного вклада термодинамических функций, относящихся к свободной поверхности кристалла [380, 414—422]. Принципиальная возможность появления такого рода эффектов предполагалась и обсуждалась в работах [108, 109,309 -312,368, 380, 414—453]. Причем, по-видимому, вклад этих эффектов будет максимально проявляться для систем, имеющих большую удельную долю поверхности и малые поперечные размеры (тонкие пленки, дисперсные системы и порошки, нитевидные кристаллы и др.). Еще несколько лет тому назад прямых экспериментальных данных по характеру атомно-электронной структуры и динамике кристаллической решетки в поверхностных слоях было очень мало, однако быстрое развитие в последнее десятилетие нового физического метода исследования поверхности твердого тела — метода дифракции медленных электронов (ДМЭ) позволило получить эти данные.  [c.123]


Третья группа факторов, которую следует отметить, обсуждая возможные методы и методики исследования поверхностей трения — особенности структуры, возникающие вследствие фрикционного взаимодействия. Это весьма высокая степень деформации поверхностных слоев с возникновением ячеистой структуры, образованной дислокационными стенками. Степень измельчения в отдельных случаях столь велика, что длительное время предполагалась их полная аморфизация, т. е. полная утрата кристаллического строения. Одновременно при трении наблюдается выраженное текстурирование поверхностей, когда их кристаллическая структура как бы приспосабливается к действующей схеме деформации. Особый объект исследования — многократно передеформированные частицы изнашивания и возникающие при трении слои переноса.  [c.160]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]

Действие сил зеркального отображения, которые весьма существенно влияют на характер перераспределения и релаксации дислокационной структуры в тонких металлических пленках толщиной порядка ста и более нанометров (именно это обстоятельство и является в настоящее время наиболее серьезным недостатком прямого физического метода исследования структурных дефектов в кристаллах). Кроме того, как показал теоретический анализ, при одинаковом уровне внешних напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил отображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. В связи с этим поверхностные источники генерируют значительно большее число дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичных конфигурации и геометрии при одинаковом уровне внешних напряжений. Поскольку скорость движения дислокаций является функцией эффективного напряжения сдвига, то в приповерхностных слоях кристалла скорость движения дисйокацм может существенно превышать скорость их движения в объеме материала.  [c.27]

При трении в условиях избирательного переноса, как пока-зали результаты многих исследований [72], образующаяся на контактирующих поверхностях металлическая пленка обусловливает малые значения коэффициента трения и величины износа. Структура и свойства этой пленки, определяющие механизм поведения материала в зоне контакта, исследованы явно недоста-,./ точно. До получения результатов исследования авторами данной работы известно было лишь, что поверхностный слой медного сплава обогащен медью. При трении бронзы о сталь в спиртоглицериновой смеси параметр кристаллической решетки поверхностных слоев, определенный рентгенографическим методом, оказался меньше, чем у исходного раствора, и стремился к параметру чистой меди. Методом радиоактивных изотопов удалось установить, что интенсивность импульсов радиоактивного цинка-65, содержащегося в исходном состоянии в бронзе типа БрОЦС в количестве 1 %, в материале поверхностного слоя после трения в 26 раз  [c.101]

Сравнительные исследования защитных свойств покрытий, стеклоткани проводили металлографическим методом по глубине окисленного слоя металла. Спектральным и химическим анализами определяли наличие компонентов покрытий в поверхностных слоях образцов и слитков. В структуре исходных образцов сплава ЖС6-КП обнаружена равномернораспределенная карбидная фаза. После нагрева при 1170 С (3 ч) поверхность образцов состоит из слоя окислов и слоя металла с неравномерным по глубине окислением.  [c.222]


Смотреть страницы где упоминается термин Методы исследования структуры поверхностных слоев : [c.196]    [c.161]    [c.179]    [c.172]    [c.682]    [c.550]    [c.270]    [c.22]    [c.29]    [c.361]   
Смотреть главы в:

Структура и методы формирования износостойких поверхностных слоев  -> Методы исследования структуры поверхностных слоев



ПОИСК



Исследование структуры

Методы исследования

Поверхностная структура

Слой поверхностный



© 2025 Mash-xxl.info Реклама на сайте