Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы шлифующие

Изделия из термопластических материалов шлифуют на фланелевых или суконных кругах диаметром 250— 500 мм с пастой из отмученной пемзы с водой.  [c.356]

К технологическим характеристикам лакокрасочных материалов относится способность пленки к шлифованию и полированию. Большинство лакокрасочных покрытий должны через определенное, время после нанесения обладать способностью легко шлифоваться и полироваться. Под шлифованием покрытий понимают создание ровной матовой поверхности при обработке щлифовальной шкуркой. Шлифование применяют как вспомогательную операцию между отдельными слоями грунтовок и шпатлевок, красок и эмалей для получения шероховатой поверхности с целью улучшения адгезии и удаления с поверхности покрытия визуально заметных неровностей и соринок. Шлифование поверхности покрытия осуществляется, как правило, абразивными шкурками. В ряде случаев для получения равномерной матовости поверхности покрытие дополнительно шлифуется порошком пемзы при помощи войлока или сукна. Существует сухое и мокрое шлифование. При мокром шлифовании количество воды, подаваемое на поверхность, практически не регулируется. Способность лакокрасочных материалов шлифоваться в большинстве случаев оценивается качественно по вре-  [c.78]


Мягкие и не слишком вязкие материалы шлифуются твердыми кругами, так как режущие свойства их зерен сохраняются довольно долго, поэтому твердые круги работают без правки в течение продолжительного времени.  [c.338]

Те же материалы шлифуются с меньшим теплообразованием, более высоким классом чистоты, при меньшем износе абразивного инструмента. Быстрорежущие и легированные инструментальные стали  [c.260]

Для получения гладких поверхностей детали из древесины и древесных материалов шлифуют. Выполняется эта операция до отделки изделия или после покрытия лаком и другими отделочными материалами.  [c.220]

Чтобы обеспечить износостойкость передачи и увеличить ее К.П.Д., материалы винта и гайки должны представлять собой антифрикционную пару. Поэтому винты изготовляют из углеродистых или легированных сталей, а гайки делают из алюминиевых и оловянных бронз, серого или антифрикционного чугуна винты ответственных передач закаливают, азотируют, а резьбу шлифуют. Рабочие поверхности винта и гайки в зависимости от условий работы передачи смазывают пластичным или жидким смазочным материалом.  [c.205]

Метод электрополирования, широко применяемый для чистых металлов, однофазных сплавов и сталей, не используется для образцов с керамическими покрытиями. Для металлических покрытий он также применяется редко из-за разной скорости анодного растворения материалов покрытия и основы. Кроме того, отрицательное влияние на качество шлифа в этом случае оказывают краевые эффекты и преимущественное травление металла покрытия вокруг пор — электрополирование приводит к искажению структуры.  [c.158]

Микроскопические исследования покрытий проводятся на травленых и нетравленых шлифах. Анализ нетравленых шлифов позволяет выявить слоистость покрытия, наличие пор, окислов. При изучении некоторых покрытий, например самофлюсующихся, травлением можно дифференцировать структурные составляющие покрытия, т, е. провести фазовый анализ 1251], оценить размер и состав диффузионной зоны. Из-за различий в химической активности материалов покрытий и основы необходимо использовать нескольких травителей, так как одним травителем обычно нельзя качественно выявить структуру одновременно и покрытия и основного металла. Металлографические реактивы, которые применяются для выявления структуры основного металла, а также для некоторых видов покрытия, представлены в книге [252].  [c.158]


Рис. 1.10. Общий вид (а) излома рамы тележки, изготовленной из стали ЗОХГСНА, стойки шасси самолета Ан-12, рельеф его излома на начальном этапе вскрытия материала по дефекту типа закон (/), в зоне усталостного разрушения (2), и (6) неметаллические включения в материале тележки в плоскости шлифа, перпендикулярно дефекту материала в виде закона Рис. 1.10. Общий вид (а) излома <a href="/info/449173">рамы тележки</a>, изготовленной из стали ЗОХГСНА, <a href="/info/493587">стойки шасси самолета</a> Ан-12, рельеф его излома на начальном этапе вскрытия материала по <a href="/info/618172">дефекту типа</a> закон (/), в зоне <a href="/info/6844">усталостного разрушения</a> (2), и (6) <a href="/info/63878">неметаллические включения</a> в материале тележки в плоскости шлифа, перпендикулярно <a href="/info/694420">дефекту материала</a> в виде закона
Были изучены две зоны в шлицевом валике с каскадом несплошностей (трещин). По одной зоне (условно № 1) была проанализирована морфология рельефа после вскрытия всех несплошностей. По другой зоне каскада несплошностей (условно № 2) был приготовлен шлиф по поверхности шлица до вскрытия несплошностей (трещин) в районе предполагавшегося нахождения не-сплошности в виде дефекта материала. Поэтому далее представлены материалы анализа рельефа поверхностей на электронном микроскопе по вскрытым трещинам (рис. 13.26) и данные металлографии по этим зонам.  [c.698]

Механическая зачистка или шлифовка - неизбежная операция для получения однородной поверхности металла. Техника зачистки и контроль за состоянием поверхности металла аналогичны применяемым при изготовлении металлографических шлифов. Загрязненную органическими веществами (лакокрасочными материалами, маслами, смазками) поверхность металла обезжиривают растворителями.  [c.135]

Классический метод исследования и контроля металлических материалов включает изучение строения структуры шлифа в оптическом микроскопе. Это направление в металловедении называют металлографией. Структуру выявляют с помощью травления. Металлографическая техника травления занимает в металловедении важное место.  [c.9]

Техника шлифования при изготовлении металлографических шлифов, как известно, является определяющей. В зависимости от расположения сечения поверхности шлифов различают долевые, поперечные и косые шлифы. Долевые и поперечные шлифы используют чаще, чем косые. Однако косые шлифы позволяют металлографически исследовать поверхностно обработанные металлические материалы и являются эффективным вспомогательным средством при оценке диффузионного слоя, тонких металлических покрытий или шероховатости поверхности. У косых шлифов секущая плоскость проходит не перпендикулярно, а под углом к поверхности. Благодаря этому получают большую ширину исследуемого среза, чем при других типах шлифов. Ширина среза в зависимости от угла наклона изменяется следующим образом [15]  [c.10]

Наиболее крупные из обнаруженных дополнительных трещин следует вскрыть, а через более мелкие приготовить металлографический шлиф. Разумеется, анализировать целесообразно те трещины, которые характерны для данного разрушения. Трещины, имеющиеся вблизи зоны долома, не могут характеризовать особенности начального разрушения. Трещину, даже не сильно развитую, легко вскрыть в случае малопластичного материала на пластичном материале при раскрытии трещины неизбежна сильная пластическая деформация, которая может быть причиной повреждения излома. Поэтому, если в детали из пластичного материала (многие алюминиевые, медные и другие сплавы) трещина расположена недалеко от анализируемого излома, то ее лучше не раскрывать.  [c.176]

Материалом для исследования служила сталь 20, отожженная в вакууме при 1200° С, 10 ч. Распределение электродных потенциалов на поверхности шлифа изучали микроэлектродным методом, описанным в работе [123].  [c.179]

Микротвердость образца можно измерять как в процессе испытания, так и после проведения опыта, определяя размеры диагоналей отпечатков с помощью прибора ПМТ-3, а также на негативах или фотографиях образца, рассматриваемых в инструментальном микроскопе. Для испытаний в установке ИМАШ-9-66 используют образцы, форма и размеры которых показаны на рис. 58. На одной из поверхностей образца приготовляют металлографический шлиф, а затем на приборе типа ПМТ-3 размечают рабочий участок, нанося контрольные отпечатки алмазной пирамиды, например, по схеме, приведенной на рис. 58, б. Эти отпечатки являются ориентирами для вдавливания индентора при измерении микротвердости локальных участков образца, наблюдении и фотографировании микроструктуры одной и той же зоны на поверхности образца во время опыта, а также используются для определения удлинения образца на выбранной базе измерения. В отдельных случаях, в частности при исследовании крупнозернистых материалов, применяют образцы сечением, например, 5x3 или 6x2 мм.  [c.161]


Для успешного осуществления низкотемпературного металлографического исследования процесса деформации металлических материалов наиболее подходящим следует считать способ прямого микроструктурного изучения твердых тел при деформировании в среде сжиженных газов. Этот способ основан на прозрачности хладагента. Испытываемый образец с приготовленным на нем металлографическим шлифом укрепляют шлифом вниз в горизонтально расположенных захватах нагружающего устройства и помещают в низкотемпературную рабочую камеру типа сосуда Дьюара, содержащую хладагент (жидкий азот, аргон, воздух и др.). После прекращения интенсивного кипения сжиженного газа (при выравнивании температур образца, деталей механизма нагружения и хладагента) производят механическое нагружение и через прозрачный слой жидкого газа и герметически вмонтированное во внутреннее днище рабочей камеры смотровое плоскопараллельное стекло одновременно наблюдают, фотографируют или снимают на кинопленку поверхность образца с помощью металлографического микроскопа, объектив которого введен в вакуумируемое пространство между стенками рабочей камеры и уплотнен в ее наружном днище.  [c.196]

В тепловой микроскопии объем информации, получаемой от объекта исследования, существенно возрастает, поскольку при этом структурные изменения, видимые на металлографическом шлифе, могут быть использованы как самостоятельный объект анализа, позволяющий определять, например, интенсивность накопления повреждений в исследуемом материале в условиях теплового воздействия и одновременного механического нагружения. Кроме того, при использовании принципов стереологии эти структурные изменения можно рассматривать как источник информации для трехмерной количественной интерпретации расположения и распределения в объеме исследуемого мате- 275  [c.275]

Для изготовления шлифовальных кругов в основном применяются искусственные шлифующие материалы, которые обладают более высокими качествами по сравнению с естественными в отношении однородности и чистоты и дешевле последних.  [c.385]

В данную группу входят ткани (табл. 6), используемые непосредственно для очистки поверхностей или служащие основой, на которую наносят шлифующие абразивные материалы.  [c.259]

Структура материалов. Для изучения структуры исследуемых материалов шлифы приготавливали по методике работы [88]. Подготовленную поверхность подвергали химическому травлению в электролитах следующих составов [68, 691 для титанового сплава ВТЗ-1 — плавиковая кислота, азотная кислота, вода в соотношении 1 1 3, для стали — реактив Виллела (10 мл азотной кислоты, 20 мл соляной кислоты, 20 мл глицерина, 10 мл перекиси водорода). Для наблюдений использовали оптический микроскоп Neophot-2 . На рис. 62, а представлена структура среднелегированного двухфазного сплава ВТЗ-1. Структура титанового сплава характеризуется наличием зерен исходной р-фазы, окаймленных а-фазой, причем р-зерна состоят из а-колоний, являющихся пачками параллельных а-пластин, разделенных прослойками Р-фазы. Структура сплава ВТЗ-1 характеризуется следующими параметрами диаметр fi-зерна 15 мкм, диаметр а-колоний 15 мкм, толщина а-пластин 2 мкм. Структура стал 08Х17Н6Т, представленная на рис. 63, б, состоит из бейнита и остаточного аустенита в виде вытянутых зерен в направлении вдоль прокатки.  [c.105]

Шлифовальные материалы из искусственных и природных абразивных материалов делят на группы в зависимости от размера зерен. ГОСТ 3647 — 80 устанавливает четыре группы шлифовальных материалов шлиф-зерно (2000—160 мкм) шлифпорошки (125 — 40 мкм) микрошлифпорошки (63-14 мкм) и тонкие микрошлифпорошки (10-  [c.245]

Сталь марки Р10М4ФЗК10 обладает наивысшей твердостью — HR 69), высокими красностойкостью и износостойкостью, но пониженной прочностью по сравнению с другими сталями этой группы. Поэтому она применяется для изготовления инструментов, работающих в условиях невысоких силовых нагрузок (чистовые и получистовые режимы), главным образом на автоматических станках, где особо важно сохранение размерной стойкости инструмента. Ее используют также для изготовления инструментов простой формы, предназначенных для резания труднообрабатываемых материалов. Шлифуется она плохо и склонна к обезуглероживанию.  [c.74]

Этот метод совтоит в следующем. Два образца исследуемых кристаллических материалов шлифуют с помощью абразивного  [c.68]

При выборе твердости круга руководствуются следующим пра1зилом твердые материалы шлифуются мягкими кр у ми, так как они интенсивнее самозатачиваются и восстанавливают режу- щие способности мягкие материалы шлифуют более твердыьш кругами, так как они медленнее изнашиваются.  [c.351]

Материалы червяка и колеса. Для червяка применяют тс же марки сталей, что и для зубчатых колес (табл. 2.1). С целью получения высоких качественных показателей переда ш применяют закалку до твердости >45НКСэ, шлифование и полирование витков червяка. Наиболее технологи шыми являются эвольвентные червяки 21), а перспективными —нелинейчатые образованные конусом 2К) или тором 2Т). Рабочие поверхности витков нелинейчатых червяков шлифуют с высокой точностью конусным или тороидньш кругом. Передачи с нелинейчатыми червяками характеризует повышенная нагрузочная способность.  [c.30]

Выбор материалов червяка и червячного колеса. Червяки изготовляют преимущественно из стали цементируемой марки 15Х, 20Х, углеродистых марок 40, 45, 50 и легированных марок 40Х, 20ХН. Поверхности витков резьбы шлифуют.  [c.335]

Образцы для исследования получали из механической смеси порошков. Использовали промьпнленные материалы никель ПНЭ-1, железо и кобальт карбонильные, хром восстановленный ПХС, бор аморфный, уголь активированный. Из смесей прессовали таблетки и оплавляли в вакууме (10 —10 мм рт. ст.) при 1200 — 1250 °С в течение 30 мин. Получали компактные образцы с объемной пористостью 2—3 %, из которых готовили полированные шлифы. Структуру сплавов выявляли химическим травлением. Фазовый состав контролировали металлографическим и рентгеиофазовым методами.  [c.111]


Механические свойства основного металла, определенные после нанесения ионно-плазменного покрытия из нитрида титана отличаются незначительно, независимо от времени нагрева при напылении (сГ(, 2 = 1150 МПа Ов = 1400 МПа б = 5,5% ф = 36%). Структура стали У8 — отпущенный сорбит. Металлографические исследования показали, что даже на нетравленных шлифах граница между покрытием и основой проявляется сравнительно четко, покрытие копирует рельеф металла. На участках, нормальных к направлению движения напыляемых частиц, толщина покрытия больше, чем на остальных. Поверхность покрытия неровная, наблюдаются впадины и бугры. Дно крупных впадин, имеющих форму усеченного конуса, обычно опцавлено, края гладкие. Аналогичные образования были обнаружены при исследовании поверхности покрытия на растровом микроскопе [246]. Полагают, что в данном случае имеет место химическое взаимодействие материалов покрытия и основы. Результаты определения трещиностойкости приведены в табл. 8.1.  [c.152]

При посадке самолета Ан-12 произошло разрушение тележки системы разворота стойки шасси, изготовленно из сплава ЗОХГСНА с пределом прочности до 1800 МПа. Анализ излома и последующий металлографический анализ в плоскости шлифа, ориентированной перпендикулярно излому, показал наличие в материале дефекта штамповки в виде протяженной цепочки неметаллических включений (рис. 1.10). Несмотря на строжайший производственный контроль качалок, в производстве такой единичный дефект имел место, привел к развитию усталостной трещины до пре-  [c.48]

Просмотр шлифов в поляризованном свете — это важнейшее вспомогательное средство при исследовании включений и различии оптически изотропных кристаллов от оптически анизотропных. Изотропность определяется строением кристалла. Все вещества, кристаллизующиеся в кубической системе, и аморфные материалы являются оптически изотропными. Все вещества, кристаллизующиеся в других системах, относятся к оптически анизотропным материалам. Изотропные вещества, т. е. большинство металлов, дают одинарное лучепреломление и не изменяют плоскости поляризации плоскополяризованного света, так что наблюдаемое поле при рассмотрении со скрещенными николями (+Л/) остается темным и освещенность незначительно изменяется при повороте объектного столика. Оптически анизотропные кристаллы, например бериллия, кадмия, магния, титана, цинка, а также пластинчатого и коагулированного графита, напротив, дают двойное лучепреломление. Они соответственно их кристаллографической ориентации разлагают плоскополяризованный свет на две взаимно перпендикулярные поляризованные компоненты. Яркость света увеличивается в зависимости от положения оси кристалла к плоскости колебания анализатора при скрещенных николях. Интер металл иды цветных металлов, кроме йнтерметал-лидов, образующихся на основе алюминия, кремния, свинца и AlSb, оптически различаются благодаря тому, что во время поворота объектного столика на 360 они четыре раза попеременно попадают в светлое и темное поле, при этом в отдельных случаях наблюдается окрашивание.  [c.13]

Одна из наиболее трудных задач состоит в из.адерении количества продуктов реакции после отжига, поскольку желательно ограничить полную толщину реакционной зоны величиной приблизительно 2 мкм. В большинстве исследований были использованы методы оптической металлографии. Наиболее важен в этих работах этап приготовления образцов, так как необходимо получить плоскую поверхность шлифа и избежать появления ступеньки между твердым волокном и значительно более мягкой матрицей. В каждой лаборатории принята своя методика приготовления микрошлифов, но, по-видимому, основные условия состоят в следующем необходимо избегать излишнего нажатия при полировании и следует создавать хорошую опору для края образца в опрессовочном материале или использовать специальный держатель, Шмитцем и Меткалфом [38] разработана методика косых сечений, которая была использована в последующих исследованиях. Для определения местного увеличения в направлении скоса был использован расчет конического сечения разрезанного наискось волокна. Этот метод пригоден для толщин менее 0,3 мкм и становится не столь надежным при больших толщинах из-за ошибок, вызванных отсутствием плоскостности сечения. Электронная ]микроскопия с использованием метода реплик оказалась не впол-  [c.103]

Частый в литейных материалах дефект — плены — в изломе выявляется по наличию сглаженных участков, не имеюпщх на поверхности рисунка разрушения (рис. 148) особенно трудно выявить плены на окисленных изломах, на изломах изделий, работавших при комнатной температуре, илены обиаруживаются также по цвету. В алюминиевых, магниевых литейных сплавах они обычно желтоватого цвета. На шлифах плеиы имеют вид разветвленного характерного дефекта.  [c.184]

На рис. 63 и 64 приведены результаты исследования микро-электрохимической гетерогенности шлифа из отожженного армко-железа электроннолучевого переплава. При измерениях микроэлектрод последовательно перемещали по прямой линии с шагом 0,05 мм. Сплошные кривые на обоих рисунках характеризуют распределение потенциалов, полученных усреднением в пределах зерен, границы и потемнение которых обозначены на оси абсцисс. Максимальная величина Аф достигает 25 мВ и примерно в два раза превышает значение Дф, измеренное на образцах обычной выплавки (рис. 65). Следовательно, кристаллографическая ориентация граней зерен проявляется в микроэлектрохимиче-ской гетерогенности сильнее в случае более чистых материалов.  [c.175]

Листовые пористые волокнистые материалы из упомянутых выше сеток формировали импульсным приложением высоких давлений при нагреве до температур, не превышающих начала рекристаллизации компонентов. Динамический характер приложения нагрузки обеспечивал сварку волокон в диапазоне температур и давлений, в котором при статическом нагружении этот процесс не происходит. Из изготовленной таким образом плоской пластины с помощью алмазсодержащего диска вырезали прямоугольные образцы в виде стержней длиной 90 мм и сечением 3 мм. Перед проведением испытаний на одной из поверхностей образца путем шлифования и последовательного полирования на алмазсодержащих дисках (с размером частиц 100, 40 и 3 мкм) приготовляли металлографический шлиф. В средней части шлифа наносили отпечатки алмазного индентора, которые служили реперными точками при измерении деформации образца. На противоположной шлифу поверхности образца наносили V-образный надрез.  [c.249]

Типичные микроструктуры композиционных материалов с металлической матрицей, полученные с использованием указанных выше армирующих упрочнителей, описаны ниже. На рис. 15 приведена микроструктура боралюминиевого композиционного материала, содержащего 45—50 об. % борного волокна диаметром 100 мкм, достаточно равномерно расположенного в алюминиевой матрице. Наблюдаемые трещины в некоторых волокнах появились, по-видимому, в процессе изготовления шлифа. В центре волокна четко виден сердечник, состоящий из борида вольфрама. На рис. 16 приведена микроструктура углеалюминиевого композиционного материала, в которой видно равномерное распределение углеродных волокон типа ВМН (с прочностью 200 кгс/мм и людулем упругости 24 ООО кгс/мм ). При увеличении 650 отсутствуют видимые следы взаимодействия. Материал получен пропиткой каркаса углеродных волокон матричным алюминиевым расплавом под давлением 50 кгс/см . На рис. 16, б при увеличении 1350 в том же материале видны следы взаимодействия в виде игольчатых  [c.46]

Кубический нитрид бора в Советском Союзе впервые получен в 1960 г. в Институте физики высоких энергий АН СССР под руководством акад. Л. Ф. Верещагина. Оказалось, что кубическая модификация нитрида бора весьма близка по своим свойствам к кубической модификации углерода, т. е. к алмазу. Параметры решетки у него лишь несколько больше, чем у алмаза (3,615 А и 1,56 А у кубического нитрида бора и 3,567 А и 1,54 А — у алмаза), причем в решетке содержится одинаковое число атомов бора и азота. Из-за небольшой разницы в параметрах решетки кубический нитрид бора уступает немного алмазу по твердости (9250 и 10 ООО кгс/см ), но превосходит твердость всех других абразивных материалов карбид кремния, например, имеет микротвердость 2800—3500, нормальный электрокорунд— 1800—2400 кгс/см , твердый сплав Т15К6 — 1700 кгс/см По своим абразивным свойствам кубический нитрид бора также превосходит все другие абразивные материалы, кроме алмаза. Порошки кубического нитрида бора шлифуют природный алмаз.  [c.90]


Фрикционные многодисковые масляные муфты используют в узлах, где трудно обеснечить изоляцию муфты от масла (коробка передач и др.). Материалами трущихся поверхностей служат закаленная сталь (> HR 60) и текстолит. При муфтах с дисками из текстолита, работающими по стали, нет металлической пыли, появляющейся при трении стали по стали. Текстолитовые диски разрушаются при температуре свыше 110° С. Стальные диски при трепиц по стали шлифуют.  [c.213]

Как отмечается в работе [57, с. 48], микротвердость тонкодисперсных материалов выше, чем грубодисперсных. Для образцов материала ЕР, в которых совершенство кристаллической структуры определяется наполнителем из природного графита, термообработка практически не изменяет его структуры и не влечет Рис. 1.21. Зависимость мнкротвердо- 33 обой изменения микро-сти, измеренной на шлифе (/) и по г> i iq пипр  [c.62]

Для неграфитированных материалов (/i,2//no=0) разность значений твердости, измеренной на шлифе и на пленке (АЯ), тем значительнее, чем выше модуль упругости. У образцов графита ЕР /цгДиоЛ даже на стадии полуфабриката, поэтому ДЯ=0 во всем интервале температуры обра--ботки.  [c.66]

Характер связи макро- и микротвердости у облученных при 310° С образцов полуфабриката ГМЗ сохранился тот же, что и для исходных материалов. Значительный рост микротвердости наблюдается при измерениях на шлифе, а при измерениях на пленке зафиксированный рост микротвердости не так велик. Исключение эффекта релаксации отпечатка путем его измерения на пленке показало, что рост макротвердости превосходит рост микротвердости в графитированном материале (Ну< <25 кгс/мм ). Иными словами, упрочнение связующего выше, чем самого зерна. В недостаточно совершенных по кристаллической структуре материалах больше упрочняется зерно.  [c.141]

Главные запорные задвижки имеют большие габариты и массу (до 16 т и более) и оснащаются местным или дистаи-ционньм электроприводом. Для надежной работы в задвижке помимо прочности и жесткости конструкций должен быть надежно работающий сальник, герметично перекрывающийся запорный орган и герметичное соединение корпуса с крышкой. Герметичность сальника создается упругим прилеганием набивки к цилиндрической поверхности шпинделя. Для улучшения работы сальника шпиндель тщательно шлифуют, суперфинишпруют и полируют, а набивку изготовляют из упругих теплостойких материалов. Этим достигается достаточная герметичность соединения, которая, однако, сохраняется лишь при гидравлическом испытании па заводе-изготовителе и сравнительно короткое время в эксплуатации. В процессе перемещения шпинделя при вьшолнении циклов открыто-закрыто разрушается близлежащий слой набивки, образуя зазор в подвижном соединении, этому способствует шероховатость и коррозия шпинделя, колебания температуры среды II снижеиие упругости набивки со временем в процессе ее старения.  [c.39]

Из контрольных угловых и тавровых сварных соединений вырезаются только шлифы для металлографического исследования. Механические свойства антикоррозионной нанлавки определяются по результатам испытаний наплавочных материалов, проводимых согласно требованиям технических условий на приемку аустенитных сварочных материалов, предназначенных для выполнения антикоррозионного покрытия.  [c.216]

Р14Ф4 Инструмент с повышенной износостойкостью для обработки особоирочных материалов и жаропрочных сплавов и пластмасс с твердыми включениями. Очень плохо шлифуется Резцы, фрезы, червячные долбяки. сегменты для пил  [c.356]

Р10К5Ф5, Р18К5Ф2 Инструмент с повышенной производительностью, красностойкостью и износостойкостью для обработки труднообрабатываемых материалов, жаропрочных и титановых сплавов. Стали плохо шлифуются и склонны к обезуглероживанию Резцы, червячные фрезы, ножи для сборных фрез, сверла  [c.356]

А4агнитно-мягкие ферриты обладают всеми механическими свойствами керамики. Они тверды и хрупки, при спекании дают усадку от 10 до 20 % и совершенно не допускают обработку резанием. Ферриты хорошо шлифуются и полируются абразивными материалами. Для точной доводки размеров и для разрезания ферритовых изделий следует применять алмазные инструменты. Склейку следует производить клеем БФ-4 по общепринятой технологии. Поверхности можно спаивать оловянньпйи припоями при условии предварительного ультразвукового лужения их оловом (паяльник одновременно должен являться излучателем ультразвука). При расчете изделий из ферритов можно принимать следующие усредненные значения их механических и тепловых параметров модуль упругости на сжатие 150 ГПа коэффициент линейного расширения 10" 1/1 °С коэффициент теплопроводности  [c.190]


Смотреть страницы где упоминается термин Материалы шлифующие : [c.339]    [c.38]    [c.276]    [c.144]   
Гальванотехника справочник (1987) -- [ c.8 , c.729 ]



ПОИСК



Шлифы



© 2025 Mash-xxl.info Реклама на сайте