Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхности Физическое состояние

Микронеровности на обработанной поверхности, физическое состояние и напряженность металла поверхностного слоя составляют сущность понятия качества поверхностного слоя.  [c.4]

Качество поверхностного слоя деталей машин может быть охарактеризовано геометрией неровностей поверхности, физическим состоянием металла поверхностного слоя и его напряженностью, в первую очередь остаточными напряжениями, возникшими в процессе изготовления образцов и деталей. Классификация параметров качества поверхностного слоя приведена в табл. 2.4 [935].  [c.140]


Однако из изложенного не видно, чем же физически состояние тела при невесомости отличается от состояния, которое будет у тела, когда оно просто покоится на поверхности Земли или движется под действием каких-нибудь других сил, например силы тяги. Между тем, что в этих состояниях есть существенное различие, показывает эксперимент. Так, если в кабину падающего лифта или космического летательного аппарата поместить сосуд с жидкостью, не смачивающей его стенок (например, с ртутью), то при невесомости жидкость не заполнит сосуд, а примет в нем форму шара и сохранит ее и вне сосуда. Объясняется это, очевидно, тем, что при невесомости изменяется характер внутренних усилий в теле (в данном случае в жидкости). Следовательно, чтобы выяснить, в чем состоит отличительная особенность состояния невесомости, надо обратиться к рассмот ению возникающих в теле внутренних усилий.  [c.258]

Форма интерференционной картины, положения максимумов и минимумов зависят от толщины и формы пластин, от угла между их поверхностями, от состояния поиерхности н т. д. Следовательно, можно, изучая форму и положение интерференционных полос, судить о свойствах исследуемой пластинки. Иначе говоря, интерференционные явления могут быть применены для измерения физических параметров прозрачных тел. Ценность интерференционного метода заключается, в частности, в том, что он чувствителен  [c.104]

Коэффициент трения скольжения зависит от материала и физического состояния трущихся поверхностей, т. е. от величины и харак-  [c.64]

Коэффициент трения качения б зависит от материала катка, плоскости и физического состояния их поверхностей. Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка н его скорости скольжения по плоскости. Для случая качения вагонного колеса по стальному рельсу коэффициент трения качения б 0,5 мм.  [c.71]

Коэффициент трения скольжения зависит от материала и физического состояния трущихся поверхностей, т. е. от величины и характера щероховатости, влажности, температуры и других условий. Коэффициент трения скольжения в зависимости от различных условий устанавливается экспериментально. Так, коэффициент трения для кирпича по бетону равен 0,76 для стали по стали — 0,15 для дуба по дубу поперек волокон — 0,54, а для дуба по дубу вдоль волокон — 0,62.  [c.65]

Наоборот, касательная составляющая реакции Кг существенно зависит от физического состояния поверхностей тела и связи, а именно от свойств их материала, обработки поверхностей, шероховатости и т. д. Эта составляющая реакции, как уже отмечалось, называется силой трения. Нормальную составляющую реакции сокращенно будем называть реакцией связи. Последний термин, конечно, имеет условный смысл.  [c.244]


Силы трения скольжения зависят от материала и физического состояния поверхностей трущихся тел.  [c.246]

Индивидуальные особенности явления обусловлены геометрическими характеристиками системы, физическими свойствами участвующих в процессе тел, особенностями протекания явления на границах системы и начальным состоянием системы, если это состояние изменяется во времени. При рассмотрении явлений, протекающих в полях массовых сил, необходимы количественные характеристики этих полей. Таким образом, следует различать геометрические, физические, граничные, временные и динамические условия однозначности. Геометрические условия отражают форму и размеры участвующих в процессе тел или их поверхностей. Физические условия характеризуют физические свойства этих тел. Граничные условия определяют особенности протекания явлений на границах изучаемой системы. Временные условия определяют обычно начальное состояние системы и изменение граничных условий во времени. Динамические условия характеризуют ускорение, определяющее массовую силу, или связь этого ускорения с характеристиками движения всей системы или жидкости в ней.  [c.9]

Геометрические условия характеризуют форму, размеры тела или системы, положение его в пространстве, состояние поверхности. Физические условия характеризуют физические свойства среды. Начальные (временные) условия характеризуют особенности протекания процесса в начальный момент времени для стационарных процессов эти условия несущественны. Граничные условия характеризуют особенности протекания процесса на границе тела и среды, на границе раздела фаз.  [c.276]

Если летучий ингибитор внесен в антикоррозионную бумагу, то скорость его испарения зависит от физического состояния и характера (равномерности) его распределения в бумаге-основе, определяющихся особенностями капиллярно-пористой структуры последней. Следует различать испарение летучего ингибитора из сухой и влажной бумаги. Скорость испарения ингибитора из сухой бумаги ничем не отличается от рассмотренного выше случая испарения ингибитора с поверхности металла, упакованного в антикоррозионную бумагу. Вскоре после начала сублимации (испарения) ингибитора из объема, заключенного между антикоррозионной бумагой и упакованным в нее металлоизделием, становится равным Рц, и процесс испарения ингибитора за пределы упаковки приобретает стационарный характер.  [c.164]

Технологические факторы, вызывающие неровности поверхности, одновременно влияют на другие показатели физического состояния поверхности (наклеп, остаточные напряжения, микротрещины, структурное состояние и т. д.). Упрочнение и разупрочнение поверхностного слоя деталей обусловливается комплексом всех физических характеристик.  [c.4]

Эти параметры могут быть получены на основе соотношений между показателями, характеризующими соответствующие физические состояния или явления, и влияющими на них показателями неровностей поверхности.  [c.193]

Первичные слои имеют высокую механическую прочность и способны выдерживать нагрузки порядка 100 МПа. Такое физическое состояние вещества может распространяться по нормали от твердой поверхности на микроны [61]. С увеличением длины цепи молекул в гомологических рядах углеводородов адгезия возрастает линейно. Это имеет существенное значение для исследования разрыва граничных слоев в канале неплотности в результате гидравлического удара. Следует отметить, что разрыв граничного слоя происходит внутри слоя и не происходит по поверхности твердая фаза — граничный слой.  [c.47]

ВЛИЯНИЕ ФИЗИЧЕСКОГО СОСТОЯНИЯ ПОВЕРХНОСТИ  [c.60]

Физическое состояние агрессивной среды имеет существенное значение для развития коррозионных процессов, протекающих в газообразной и жидкой фазе, так как твердая фаза не агрессивна по отношению к сухим силикатным материалам. Если поверхность соприкасается с влагой воздуха и на ней образуются тончайшие слои насыщенного раствора пылевидного материала, твердая фаза, переходя в жидкую, становится агрессивной.  [c.36]


Качество поверхностного слоя деталей машин определяется геометрией неровностей поверхности (шероховатость, волнистость н др.), физическим состоянием металла поверхностного слоя и его напряженностью.  [c.46]

Тепло, возникающее в процессе пластической деформации и внешнего трения рабочих поверхностей режущего инструмента об обрабатываемый материал, оказывает огромное влияние на физическое состояние поверхностного слоя. Тепло, повышая пластичность металла, с одной стороны, способствует более глубокому упрочнению, с другой — ускоряет протекание процессов разупрочнения. Следовательно, характер изменения глубины и степени упрочнения металла в процессе деформации поверхностного слоя зависит от количественного соотношения протекающих процессов упрочнения и разупрочнения.  [c.49]

Существующие характеристики качества поверхностного слоя (шероховатость поверхности, глубина и степень наклепа и остаточные макронапряжения) недостаточно полно отражают физическое состояние и напряженность металла поверхностного слоя и его связь с эксплуатационными свойствами детали.  [c.62]

Физическое состояние и напряженность поверхностного слоя после обработки электрическим методом зависят от физико-химического механизма снятия припуска с обрабатываемой поверхности и условий, определяющих его протекание.  [c.130]

На износостойкость оказывает влияние не только шероховатость поверхности, полученная при окончательной обработке, но и характер предварительной обработки, определяющей физическое состояние поверхностного слоя. С увеличением шероховатости поверхности при предварительной обработке (например, до закалки) и одинаковой шероховатости поверхности после окончательной обработки износостойкость будет снижаться. Для повышения износостойкости и других эксплуатационных свойств окончательная обработка должна по возможности уменьшать структурную неоднородность поверхностного слоя и создавать равномерные напряжения по всей поверхности. В качестве примера такой обработки рассмотрим влияние на эксплуатационные свойства чистовой обработки деталей способом гидрополирования.  [c.397]

Чередование операций и способ предварительной обработки поверхностей оказывают влияние на механизм формирования поверхностного слоя, на физическое состояние слоев металла и  [c.412]

Склеивание — один из способов получения неподвижных неразъемных соединений деталей. В процессе склеивания между сопрягаемыми поверхностями деталей вводится слой специального вещества, способного при определенном физическом состоянии, благодаря проявлению сил адгезии, неподвижно скреплять эти детали.  [c.281]

Сила трения зависит от природы трущихся поверхностей, их физического состояния (загрязнённости, шероховатости), давления, размера поверхности, но она слабо зависит от температуры.  [c.122]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]

В то время как излучательная способность любого тела зависит только от состояния его поверхности, физических свойств вещества и температуры тела, поглощательная способность тела, помимо этих факторов, зависит также и от спектрального состава излучения, падающего на данное тело. Поэтому поглощательная способность одного и того же тела при заданной его температуре существенно изменяется в зависимости от специфических свойств источника, посылающего излучение на данное тело. Например, если в качестве источника излучения использовать нагретую металлическую пластинку, то определенный для этих условий коэффициент поглощения тела будет заметно отличаться от того значения коэс ициента поглощения, которое имело бы место, если бы в качестве источника излучения использовалась пластинка из диэлектрика при прочих равных условиях.  [c.46]


Оптический пирометр градуируется по черному телу, обычно при длине волны Я = 0,65-н0,665 мк, выделяемой красным светофильтром. При визировании оптического пирометра на поверхность нагретого тела определяется температура Т,. Если отраженное излучение тела мало по сравнению с его собственным излучением (например, нагретая заготовка после выдачи ее из печи, струя жидкой стали на выпуске из печи), то по замеренной яркостной температуре Т, можно из уравнения (3-15) определить (при известной е ) величину действительной температуры тела Т. Разница между Т и Г, определяется уровнем спектральной степени черноты тела Чем ближе к единице, тем меньше при прочих равных условиях яркостная температура отличается от действительной (табл. 3-1). Значения спектральной степени черноты (Л,=0,65 мк) для некоторых металлов и материалов приведены в приложении (табл. П-2), а также в [Л. 29, 125, 198]. В общем случае зависит от X, от материала излучающей поверхности, от ее температуры и физического состояния.  [c.43]

Атомы, расположенные на поверхности, с внешней стороны имеют свободные связи, и поэтому соприкосновение ювенильной металлической поверхности с окружающей средой при атмосферном давлении приводит к мгновенному образованию на ней мономолекулярного слоя. Физическое состояние поверхности трения твердого тела характеризуется наличием определенного состава поверхностных пленок и особенностями структуры поверхностных слоев. В реальных условиях на воздухе все микровыступы и микротрещины почти м1новенно, от сотых до тысячных долей секунды, покрываются оксидн1,1ми пленками а слоями адсорбированных молекул газов, воды и жирных веп еств. Обычно над ювенильной поверхностью находятся слои оксидов, прочно связанн ,1е с металлом. Эти пленки влияют как на деформационное упрочнение, так и на хрупкое разрушение, причем по-разному при различных температурах и степнях деформации, что часто не учитывается современными теориями. Совершенно очевидно влияние этих пленок на  [c.58]

Так, например, В. С. Щедров [116] пишет В результате приработки материальная поверхность приходит к такому физическому состоянию и такой структуре, при которых поверхностный слой обладает минимальной потециальной энергией, т. е. представляет устойчивую систему, допускающую в данных условиях минимальную диссипацию энергии. Эта воспроизводимая шероховатость называется оптимальной . По нашему определению эта шероховатость называется равновесной.  [c.19]

По современным представлениям [169], именно в поверхностных слоях металла из-за их физической неравноценности с основным объемом происходят первые пластические деформации, приводящие к усталости. Поэтому качество поверхности и состояние поверхностных слоев металла при его циклическом нагружении имеют принципиальное значение. Под качеством поверхности обычно понимают шероховатость, т.е. макро- или микрогеометрическую неровность поверхности под o tohj нием поверхностных слоев — изменение их физико-механических свойств в результате обработки (главным образом конечной или финишной) при изготовлении детали или образца.  [c.177]

Метод отслаивания. В испытании на отслаивание тоже используется стягивающее усилие, перпендикулярное к поверхности покрытия. Этим методом производят контроль металлических покрытий на пластмассах. Испытания проводят на специально подготовленных образцах с ровной плоской поверхностью. На поверхность наносят толстослойное эластичное медное покрытие после осаждения металла химическим методом на пластмассу. Целью испытания является измерение связи между осадком металла, полученным химическим путем, и основным материалом — пластмассой, так как эта связь зависит от процессов предварительной обработки пластмассы, а также от ее физического состояния. На расстоянии 25 мм друг от друга (или некотором другом) наносят две параллельные линии. Они должны проходить сквозь электроосаждаемый слой меди (толщиной 15 мкм) и слой металла, полученный в результате химического осаждения, достигая пластмассы. Кусок полоски металла между линиями, отслоенный с помощью лезвия, вводимого между покрытием и основным материалом со стороны кромки образца, захватывается в тисках разрывной машины, а образец жестко закрепляется. Нагрузка, требуемая для отслаивания металла от пластмассы, считается величиной отслаивания . Во время испытания необходимо сохранять направление действия растягивающего усилия под углом 90° к поверхности образца. Это осуществляется с помощью соответствующих тяг в устройстве для испытаний.  [c.151]

Относительная значимость каждого из параметров качества поверхностного слоя в снижении сопротивления усталости исследованных сплавов после шлифования при заданных условиях испытания оценивается следующим образом шероховатость поверхности до 50%, наклеп поверхностного слоя до 40—45%, тех-Бологические остаточные макронапряжения до 5—10% причем это соотношение практически сохраняется постоянным в интервале оптимальных режимов шлифования, обеспечивающих шероховатость поверхности у5—у10, для данного физического состояния поверхностного слоя после шлифования.  [c.206]

Загрязнения на металлических поверхноетях весьма разнообразны. Их можно классифицировать по химическому составу (неорганические щелочные, кислотные, нейтральные гомеопо-лярные, гетерополярные органические и др.), по физическому состоянию (твердые, жидкие, полужидкие), по происхождению (от формовочных масс, полировальных смесей, от коррозии и др.), по силе связи с поверхностью основного металла и т. п. Мы примем за основу классификации отношение загрязнений к различным агентам.  [c.8]

Способ удаления загрязнений зависит от вида загрязнения, вида очищаемого изделия (рода и состава металла, формы очищаемой поверхности), свойств очищающих агентов (состава, физического состояния) и др. Чаще всего агент представляет собой жидкость из одного компонента или раствор из комбинации нескольких компонентов. Обычно это однородная система (органический растворитель, водный раствор кислот, щелочей, солей) или неоднородная (несмешивающиеся вещества, эмульсии). Реже очищающим агентом служит твердое (абразив), полутвердое (мази) или газо- и парообразное тело.  [c.13]

Естественно, что когда капли эмульсии, представляющие собой систему из двух жидкостей, начинают прогреваться, то при достижении температуры поверхности капли 150—200° С физическое состояние каждой жидкости начинает изменяться. Топливная часть капли еще остается в жидком состоянии, тогда как другая ее составляющая — вода — превращается в пар. Благодаря упругости водяного пара капля эмульсии превращается в своеобразный снаряд , который под действием расширяющегося водяного пара разрывается на более мелкие части. Это явление было автором замечено впервые в 1956 г. при наблюдении за поведением капель водномазутных и водно-керосиновых эмульсий при нагреве их до температуры 600-700° С [13].  [c.121]

Беличина излучательной способности при данной температуре за висит от рода поверхностного слоя тела и физического состояния поверхности, причем максимальное количество энергии излучается шероховатой зачерненной поверхностью (например, покрытой сажей, черно-матовым лаком и др.). Верхним пределом этой ееличины является излучательная способность так называемого абсолютно черного тела, являющегося абст  [c.6]



Смотреть страницы где упоминается термин Поверхности Физическое состояние : [c.53]    [c.144]    [c.203]    [c.156]    [c.53]    [c.32]    [c.16]    [c.408]    [c.238]   
Диффузионная сварка материалов (1981) -- [ c.24 , c.27 ]



ПОИСК



Поверхность состояние

Физическое состояние



© 2025 Mash-xxl.info Реклама на сайте