Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы подробного расчета конструкции

МЕТОДЫ ПОДРОБНОГО РАСЧЕТА КОНСТРУКЦИИ  [c.355]

С помощью такого же метода подробного расчета следует провести анализ напряжений и динамики машины, чтобы выбрать конструкцию блоков цилиндра, картера и приводного механизма. Информация, представленная в разд. 2.5, позволяет определить, какие при этом нужно учесть соображения. Как отмечалось выше, полное описание конструкции двигателей с кривошипно-шатунным н ромбическим-приводами можно найти в работах [72, 73]. Аналогичные данные представлены и в отчетах фирмы Дженерал моторе , но в менее компактной форме. Как только собраны все данные для предварительного расчета, можно с помощью методов раздельного анализа оценить степень совершенства конструкции. Затем можно определить влияние изменения размеров отдельных узлов или рабочих характеристик двигателя на параметры системы в целом.  [c.363]


Хотя конструктивный анализ нельзя отнести полностью к точным наукам, тем не менее методы, используемые для анализа конструкций электронных устройств, довольно хорошо разработаны. Применяемые математические и статистические методы подробно описаны в гл. 4, т. I, и гл. 1, т. II. Прогноз надежности электронных систем включает определение числа и типов электронных элементов, выбор (по справочникам или по данным испытаний) показателей надежности для элементов, принятие определенных окружающих условий, установление пределов облегчения режимов работы элементов, определение степени резервирования схем и, наконец, оценку внутренне присущей конструкции надежности. Расчеты для систем средней и более высокой сложности обычно производятся на электронной вычислительной машине. Предсказанный на основе такого анализа показатель надежности хотя и не является точной величиной, но все же позволяет грубо оценить, близка ли надежность конструкции к требуемой надежности. Результаты анализа функциональных механических, гидравлических и пневматических конструкций обычно менее точны. Это объясняется тем, что по используемым элементам обычно имеется меньше данных. Анализ надежности силовых элементов основывается на оценке запасов прочности и преобразовании их с помощью соответствующей системы взвешивания в показатели надежности.  [c.42]

Упругие элементы (пружины), установленные между ободом зубчатых колес и ступицей (рис. 5.6), значительно снижают жесткость при закручивании венцов зубчатых колес относительно шестерен на промежуточных валах, и тем самым снижают неравномерность в распределении нагрузки. Подробное описание конструкции зубчатого колеса с упругими элементами и метода расчета пружин дано в учебной литературе [30].  [c.122]

В. И. Кузнецов (его предыдущие работы рассмотрены выше) в своей работе [218] рассмотрел вопросы определения перемещений и напряжений в балках, лежащих на упругом основании, а также показал решение круглых плит и сооружений с учетом влияния верхних конструкций. В своей книге [219] В. И. Кузнецов изложил различные методы расчетов балок на упругом основании, наиболее подробно осветил случаи расчетов конструкций и деталей, следуя своему методу автор показал влияние местного смятия на величину деформаций и давления по краю на распределение напряжений.  [c.102]


Очень широко применяют многодисковые фрикционные муфты с электромагнитным управлением, особенно в коробках скоростей. Дистанционное управление и точное срабатывание этих муфт позволяет легко автоматизировать управление скоростями резания и подачами станков. Подробное описание конструкций таких муфт и методы их расчета см. в работе [191.  [c.223]

Следует отметить, что метод конечных элементов вносит ряд дополнительных преимуществ в расчет температурных напряжений. Последовательная методология конечно-элементного анализа задач теплопроводности пригодна для расчета распределения температуры в конструкции. Основные идеи расчета стационарных задач теплопроводности методом конечных элементов излагаются в разд. 5.4. В работах [3.7, 3.8] описывается более подробно применение метода конечных элементов в этой области, не связанной непосредственно с расчетом конструкций, включая решение нестационарных задач теплопроводности. Имеется возможность применить одну и ту же программу общего назначения, реализующую метод конечных элементов, как для расчета температур, вызванных тепловым потоком, так и температурных напряжений, возникающих из-за наличия температурного поля. Кроме того, в тех случаях, когда свойства материала зависят от температуры, можно задать характеристики для каждого элемента в зависимости от значения температуры в элементе.  [c.90]

В книге кратко освещены основы теории тепло-.и массообмена в процессе сушки, а также ее кинетика и динамика и приведены термодинамические характеристики влажного газа. Подробно рассмотрены методы инженерного расчета сушилок с определением их габаритов при различных способах подвода тепла и при совмещении сушки с другими термическими процессами (прокаливание, химическое разложение и т. д.). Описаны технологические схемы сушки различными методами, конструкции наиболее распространенных в химической промышленности сушильных аппаратов и перспективные комбинированные установки.  [c.450]

Особенности конструирования и расчета на прочность отдельных узлов и соединений самолета излагаются с учетом современного состояния технологии и материаловедения. В отличие от других изданий, посвященных вопросам конструирования в самолетостроении, в данном учебном пособии рассматриваются не общие вопросы проектирования самолета и его агрегатов в целом, а главным образом, вопросы конструкторской разработки отдельных деталей, узлов и типовых соединений с подробным анализом конструкции и методов расчета на прочность. Именно такая детальная разработка конструкции особенно важна для начинающего инженера-конструктора. Это несомненно будет способствовать выработке необходимых навыков конструирования у студентов и повышению интереса будущих инженеров к работе в подразделениях конструкторских бюро.  [c.6]

Рассмотрим основы практических методов расчета на сдвиг (срез) заклепочных и сварных соединений. Более подробно эти вопросы освещаются в курсах деталей машин и стальных конструкций.  [c.86]

Для снижения методической погрешности при использовании моделей средних значений важно осуществить рациональное условное деление конструкции ЭМУ на отдельные элементы, либо увеличить число таких разбиений. Но в последнем случае метод приближается к методу сеток и становится громоздким, в то время как практически важно получение высокой точности расчетов при ограниченной дискретизации. При умелом применении схем замещения методическая ошибка в сравнении с методом сеток составляет обычно не более 5 % даже при ограниченной степени дискретизации. По крайней мере, это заметно меньше, чем погрешности от неточности задания входной информации. При выборе числа разбиений важен и характер решаемой задачи. При грубой оценке показателей поля возможна упрощенная схема замещения с пятью-шестью укрупненными телами (ротора в целом, объединенных обмотки и пакета статора и т.д.). Если необходим анализ изменения осевой нагрузки на подшипники, то особо подробно должны быть представлены тела, входящие в замкнутую размерную цепь их установки, а остальные элементы могут рассматриваться укрупненно. При анализе относительных температурных деформаций требуется наиболее детальная дискретизация ЭМУ, особенно для элементов, имеющих различные коэффициенты линейного расширения. Здесь ТС, например, должна содержать не менее 15—20 тел.  [c.127]


Необходимо еще раз остановиться на двух вопросах. Во-первых, надо разъяснить, что все расчеты будут выполняться по опасной точке, т. е. нарушением прочности конструкции будем считать возникновение хотя бы в одной точке заметных пластических деформаций или признаков хрупкого разрушения. Не вдаваясь в подробности, надо упомянуть, что такой подход к расчету не единственно возможный и в расчетной практике применяют другие методы и подходы. Конечно, учащимся строительных специальностей в свое время придется подробно рассказывать о расчетах по предельным состояниям. Во-вторых, надо дать понятие о предельном напряжении как о напряжении, при котором возникают признаки разрушения или появляются заметные пластические деформации уточнить, какие механические характеристики материалов при статическом нагружении являются предельными напряжениями.  [c.77]

Расчет стержневой конструкции начинается с определения усилий в отдельных стержнях. Здесь используется метод сечений, а также вытекающий из него способ вырезания узлов. Различные модификации этих приемов подробно изучаются в курсе строительной механики стержневых систем.  [c.79]

В каждом разделе даются основные сведения по теории, расчетные формулы без выводов, но с необходимыми пояснениями их сущности и рекомендациями для практического применения. Более подробно освещаются методы расчета элементов конструкций, применяемые при проектировании.  [c.9]

В книге отражен опыт, накопленный отечественным гидротурбостроением, и дано представление о современных зарубежных конструкциях, приведены параметры агрегатов, определяющих состояние отрасли, рассмотрены конструкции поворотнолопастных, радиально-осевых и диагональных гидротурбин и изложены методы расчетов их узлов и деталей, даны представления об их напряженном состоянии. В изложенном виде некоторые из расчетов публикуются впервые. Конструкции ковшовых и горизонтальных капсульных гидротурбин, имеющих меньшее применение в отечественном гидротурбостроении, рассмотрены менее подробно. При расчете деталей этих машин в качестве аналогов могут быть использованы во многих случаях приведенные в тексте методы расчетов.  [c.3]

В главах XV и XVI обращено внимание на формулирование основных фундаментальных вариационных принципов механики деформируемого тела, на их дуальность и вытекающую из нее дуальность методов сил и перемещений. Примеры, приведенные в главе XVI, призваны помочь читателю уяснить механический смысл вопросов. Алгоритмический же и вычислительный аспекты вопроса, в том числе в связи с использованием ЭВМ при расчете сложных конструкций, обсуждается, из-за ограниченности объема книги, лишь в общих чертах и даются указания на литературные источники, где этот аспект освещен подробно. Думается, что даже такое знакомство с новыми вопросами расширит кругозор читателю, а указания на основные литературные источники будут способствовать этому.  [c.8]

Если приближенные методы расчета подобного типа конструкций на детерминированные нагрузки разработаны сравнительно подробно, то малоизученным в строительной механике является расчет нелинейно-упругих систем на действие сил, являющихся случайными функциями времени.  [c.165]

В четвертой главе изложены основы проектирования резьбовых, сварных и клеевых соединений пластмассовых элементов конструкций. В ней же достаточно подробно рассмотрены методы расчета и особенности конструирования зубчатых передач, муфт и подшипников скольжения с применением пластмасс, а также приведены данные по расчету и выбору основных конструктивных параметров и технологии сборки пластмассовых трубопроводов и деталей трубопроводной арматуры. Вопросы расчета и конструирования пластмассовых деталей в данной книге освещены значи-  [c.8]

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

На градиент степени реактивности и структуру потока влияет также форма меридиональных обводов проточной части. Свободный поток за НА, не имеющий радиального градиента давления, принимает форму однополостного гиперболоида вращения [17, 21]. В литературе подробно освещены методы расчета и результаты экспериментальных исследований ступеней с различными геометрическими формами меридиональных обводов проточной части [5, 13, 24]. Снижение градиента степени реактивности за счет меридионального профилирования может найти, по-видимому, лишь ограниченное применение в мощных паровых турбинах, так как существенное искривление ограничивающих ступень поверхностей нарушает плавность обводов проточной части и усложняет конструкцию цилиндров.  [c.200]


Расчет по методу предельных состояний i) выходит за рамки основного курса сопротивления материалов. Согласно принятым в СССР и в некоторых других странах нормам и правилам он является обязательным лишь при расчете строительных конструкций. В машиностроении он пока не применяется. Подробно излагается расчет по методу предельных состояний в курсе строительных конструкций. Однако так как в конечном итоге этот метод базируется на сопротивлении материалов и для того, чтобы изучающий его мог увязать принятую в нем методику и терминологию с таковыми в сопротивлении материалов, ниже будут даны основные понятия расчета по методу предельных состояний для строительных конструкций.  [c.444]

Следует признать удачной структуру книги. Глава 1 позволяет понять общие принципы работы двигателя Стирлинга и особенности его конструкции и представить возможные области его применения. В последующих главах эти вопросы освещены более подробно, чтобы дать возможность читателю глубже познакомиться с теоретическими основами двигателя (гл. 2), методами расчета и конструирования двигателей (гл. 3), конструкцией действующих двигателей (гл. 4), нестандартными источниками энергии (гл. 5), и другими проблемами. Книга отличается живым языком и четким изложением материала. Авторы, с одной стороны, достаточно подробно анализируют сложные процессы, с которыми приходится сталкиваться при создании двигателей Стирлинга, а с другой — возбуждают ин-  [c.6]

Как уже отмечалось в начале этой главы, имеются некоторые приближенные методы, с помощью которых можно определить основные особенности конструкции, и в настоящее время получены некоторые масштабные коэффициенты [69, 70]. Однако на стадии предварительного расчета потребуются дополнительные подробные данные для более полной оценки характеристик предложенной системы. Затем эти данные используются в качестве исходных для более точных анализов и расчетов. Чтобы определить рабочие характеристики, требуется знать следующие параметры  [c.348]

Уровень термодинамического анализа в большой степени зависит от склонности и опыта исследователя, но вряд ли будет использован достаточно строгий и точный метод узлов, поскольку для применения такого метода требуются данные, которые должен дать алгоритм. Разумеется, на основании известных результатов можно предварительно рассчитать конструкцию нагревателя, а метод узлов использовать как итерационный способ усовершенствования конструкции. Однако такой подход требует больших затрат и позволяет получить данные лишь о термодинамических характеристиках нагревателя. Для получения информации о напряжениях в материале, сроке службы и стоимости нагревателя требуется модификация этого анализа. Расчет с использованием соотношений для полностью идеального цикла также недостаточен, поскольку требуется более подробная информация об изменении давления и массового расхода в цикле.  [c.357]

Подробные данные о конструкциях термоприемников и методах экспериментов и расчета погрешностей при измерении высоких скоростей газа рассмотрены в [10, 26].  [c.258]

В работе [2] описана специальная конструкция тригонометрических рядов для построения периодических решений пространственной конвекции. В [3] детально разработан метод решения плоской задачи Релея с помощью этих рядов для случая валов. Показано, что с помощью специального подбора управляющих параметров алгоритма можно, в отличие от стандартного метода малого параметра, получать надежные количественные результаты для существенно больших надкритичностей конвективных движений. В предлагаемой статье приводится подробная аналитическая разработка подхода 2] для пространственной конвекции с гексагональной симметрией в горизонтальном слое со свободными границами. На основе полученных формул исследуется приближенно поведение линий тока, изотерм, зависимость числа Нуссельта от волнового числа. Численные расчеты проведены для малых надкритичностей при сохранении небольшого количества членов в рядах (7V = 2,4,6). Хотя область применимости построенных представлений по числу Релея еще не оценена, предложенная конструкция может быть использована при небольших N для расчета начальных приближений при построении, например, конечноразностных итерационных процедур решения уравнений Буссинеска для гексагональной конвекции.  [c.390]

Идея представления сплошной среды в виде системы элементов конечных размеров восходит еще к Пуассону ). Однако лишь появление ЭВМ позволило построить на ее основе эффективные методы расчета конструкций ). К настояшему времени с помощью метода конечных элементов оказалось возможным решать многие трехмерные задачи для линейно-уиругих конструкций и упругопластические задачи для двумерных конструкций. Ниже мы дадим подробное описание метода конечных элементов для плоской задачи теории упругости, а также изложим основы более сложных методов.  [c.552]

Работоспособность конструкции и ее весовые характеристики определяются прежде всего принимаемыми при расчете требованиями к прочности. В течение десятилетий проектировщики самолетов и ракет основываются на нормативных методах расчета на прочность. На основе обширных теоретических и экспериментальных исследований, большого опыта эксплуатации конструкций для различных расчетных случаев устанавливаются нормированные -значения коэффициентов безопасности. Близкие к единице значения коэффициентов безопасности. свидётелвствуют, кроме всего прочего, о высоких требованиях к методам расчета. Предварительные проектировочные и текущие пове- рочные расчеты проводят с использованием современных теорий,, численных и аналитических методов анализа. Окончательное суждение о прочности конструкции выносят после проведения цикла статических испытаний. В этой главе освещаются перечисленные вопросы, а также особенности нагружения ракеты в полете. Более подробные расчеты отдельных отсеков и агрегатов рассматриваются в следующих главах.  [c.271]

С помощью данных, полученных методами предварительного расчета, можно провести более строгий анализ основных узлов двигателей. В работах [72, 73] представлено, по-видимому, наиболее полное описание метода такого подробного расчета, а в работах [6, 18] приведен метод расчета конструкции двигателя с термодинамической точки зрения. Ввиду сложности конструкции двигателя в целом пока не создано универсального теоретического или численного расчетного метода. Необходимо применять методы раздельного анализа, хотя в общую методику расчета можно включить комбинированный метод расчета газодинамических характеристик типа предложенного Уриелли или Органом.  [c.355]

Как уже сказано выше, при вычислении матрицы жесткости метод интегрирования Гаусса оказьгеается наиболее экономичным. Однако в других случаях иногда целесообразно использовать иные схемы интегрирования. Например, в динамических задачах приходится рассчитывать так называемые матрицы масс конечных элементов. Если точки интегрирования совпадают с узлами конечного элемента, то матрица масс оказывается диагональной, что очень важно для разработки экономичных процедур динамического расчета конструкций. Подробнее вопрос о вычислении матрицы масс конечных элементов будет рассмотрен в гл. 9 здесь же в этой связи остановимся еще на двух схемах численного интегрирования.  [c.191]


Методы, основанные на использовании дополнительной энергии, явились источником для значительных достижений в области расчета конструкций читателю, желающему подробнее изучить эти методы, следует обратиться к другим источникам, например [11,32—11.34, 11.41, 11.42]. Современное изложение прин-ципов энергии деформации и дополнительной энергии в матричной форме содержится в монографиях [11.43, 11.44] другие аспекты освещаются в работах [ 11.45— 11,49]. Историю развития методов, использующих дополнительную энергию, описали Оравас и МакЛин [1.13], а также Вестергард, включивший в работы [11.41, 11.50, 11.51] некоторые комментарии исторического характера.  [c.527]

Публикации, которые в виду их числа не могут быть подробно перечислены здесь, указаны в обзоре Аргириса и Пэттона [1.7. Две заслуживающие упоминания работы выполнены Аргирисом и Келси [1.8], а также Тернером и др. [1.9]. В этих исследованиях были объединены подходы, используемые при расчете фермовых конструкций, с подходами, применяемыми при расчете сплошных сред при этом была использована матричная форма записи. Эти работы оказали решающее влияние на развитие метода конечных элементов в последующие годы. Было бы неточным приписывать появление всех основных аспектов метода конечных элементов именно этим работам, потому что ключевые моменты метода имелись даже раньше 1950 г. в работах Куранта [1.10], Мак-Генри [1.Ц] и Хреникоффа [1.12]. Особенно важна работа Куранта, так как в ней рассмотрены задачи, описываемые уравнениями, относящимися не только к механике конструкций. Однако, отмечая указанную особенность метода конечных элементов, останавливаться на ней подробно не будем, руководствуясь тем, что наше внимание в основном будет сосредоточено на численном расчете конструкций.  [c.18]

На первый взгляд, этот интуитив-но понятный и доступный инженерный метод выглядит не совсем убедительно — в частности, остается открытым вопрос о соотношениях между силами и перемеш.ениями отдельных элементов. Способы получения этих соотношений будут подробно рассмотрены в гл. 2 после изложения основ метода. На данном же этапе целесообразно кратко описать общий метод расчета конструкций, который будет широко использоваться в книге после рассмотрения свойств конечных элементов.  [c.11]

Расчетное исследование НДС образцов из стали 15Х2МФА (рис. 1.4), подвергнутых растяжению в области низких температур, было проведено с целью анализа параметров, характеризующих сопротивление хрупкому разрушению материала [131]. Подробно результаты расчета и эксперимента будут изложены в подразделе 2.1.4. В настоящем разделе мы хотим продемонстрировать работоспособность метода решения упругопластических задач в части учета геометрической нелинейности. Дело в том, что перед разрушением испытанных образцов при Т = —100 и —10°С происходила потеря пластической устойчивости (зависимость нагрузки от перемещений имела максимум). Очевидно, что расчетным путем предсказать потерю несущей способности конструкции можно, решая упругопластическую задачу только в геометрически нелинейной постановке. При численном моделировании нагружение образцов осуществляли перемещением захватного сечения образца от этапа к этапу задавалось малое приращение перемещений [131]. При этом анализировали нагрузку, действующую на образец. Механические свойства стали 15Х2МФА, используемые в расчете, представлены в подразделе 2.1.4. На рис. 1.4 представлены зависимости нагрузки от перемещений захватной части образца. Видно, что соответствие экспериментальных данных с результатами расчета хорошее. Наибольшее отличие расчетной максимальной нагрузки от экспериментальной составляет приблизительно всего 3 % различие в среднеинтегральной деформации при разрушении образца е/ = —1п (1—i j) (i ) — перечное сужение нет-  [c.32]

Методы расчета колебаний машиностроительных конструкций в области низких частот, где основные части системы могут рассматриваться как абсолютно жесткие, достаточно подробно изложены в работах Дж. П. Ден-Гартога, С. П. Тимошенко, Н. М. Бабакова и Я. Г. Пановко. Методы расчета амортизированных систем рассматривались в работах Н. Г. Беляковского и Н. И. Клюкина.  [c.4]

Для расчета на прочность элементов конструкций при длительном малоцикловом и неизотермическом нагружении весьма эффективны численные методы. Высокая трудоемкость решения подобных задач, обусловленная разнообразием конструктивных форм и сложностью вьиислений (даже при использовании мощных ЭВМ), не позволяет достаточно подробно проанализировать кинетику процесса повторного нагружения (обычно расчет проводят для пяти первых циклов нагружения).  [c.22]

Большой порядок систем уравнений, вызванный подробной дискретизацией области, и большая ширина полосы ненулевых коэффициентов, вызванная разветвленным характером геометрии расчетной области, могут при ограниченной разрядности ЭВМ привести к накоплению недопустимой погрешности. Примером такой разветвленной конструкции является патрубок в сосуде, содержаший отвод внутрь сосуда (рте. 3.6, а). Для расчета вариационно-разностным методом, рассмотренным вьппе для задач концентрации напряжений, была построена сеточная область, показанная на рис. 3.6, б. Соответствующее число уравнений равно 2413, ширина полосы — 55. Расчет выполнялся на ЭВМ соответственно с 12- и 7-разрядными числами. Погрешюсть расчета контролировалась по величине возникающей в месте закрепления опорной реакции, а также путем проверки по результатам расчета условий равновесия в сечениях тонкостенных участков патрубка. Если в первом случае оцененная таким образом погрешность в величине напряжений не превьпыала 1-2%, то во втором случае все результаты расчета оказались далекими от правильных.  [c.56]

В книге рассматриваются конструкции и расчеты регуляторов, методы статических и динамических исследований систем регулирования различных элементов судовых паросиловых установок. Подробно излагаются принципы построения схем регулирования судовых котельных и турбинных установок, конденсатных систем, деаэрацион-ных и конденсационных установок и систем снабжения паром различных потребителей.  [c.496]

Методы исследования экскаваторов на надежность и прочность подробно изложены в сборнике Расчет и испытания одноковшовых экскаваторов и кранов под ред. В. А. Ряхина (Издание ЦИНТИАМ, 1964 г.) в статьях инженеров А. М. Крылова и А. В. Раннева. Этими же авторами предлагаются конструкции стендов и установок.  [c.122]

Технология анализа конструкций методом конечных элементов используется во многих проектно-конструкторских организациях, то есть везде, где требуется с высокой степенью достоверности оценить прочность проектируемых конструкций при различных видах воздействий. В книге рассматривается пакет конечно-элементного анализа MS .visualNASTRAN for Windows (2003), который позволяет выполнять практически любые виды анализа и оптимизировать параметры конструкции, в доступной форме излагаются способы проведения расчетов с его использованием. Кроме того, на страницах данного издания подробно рассказывается о компонентах интерфейса программы, в том числе средствах построения геометрической модели и автоматизированного создания конечно-элементных сеток.  [c.2]

Конструкции и методы расчета поршневых компрессоров, способы их регулирования, обору-дован(1е компрессорных станций и правила их эксплуатации достаточно подробно изложены в [18].  [c.457]

Однако подробная конечноэлементная модель самолета может включать в себя десятки и даже сотни тысяч узловых перемещений, в связи с чем полное решение такой задачи может оказаться невыполнимым на имеющихся ЭВМ. Поэтому на практике часто выполняют поагрегатный расчет, рассматривая, например, крыло как независимую конструкцию, неподвижно закрепленную в местах соединения с фюзеляжем. Соответствующие перемещения считаются нулевыми и исключаются обычным образом из системы уравнений относительно узловых перемещений крыла. Такой приближенный подход согласуется с традиционными методами расчета авиационных конструкций.  [c.325]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]



Смотреть страницы где упоминается термин Методы подробного расчета конструкции : [c.406]    [c.76]    [c.70]    [c.151]    [c.196]    [c.240]   
Смотреть главы в:

Двигатели Стирлинга  -> Методы подробного расчета конструкции



ПОИСК



39 — Конструкция 31—32 — Методы



© 2025 Mash-xxl.info Реклама на сайте