Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Машиностроительные конструкции Колебания

Машиностроительные конструкции -Колебания 339—389  [c.547]

Механика деформируемого твердого тела включает в себя целый ряд наук, о теория упругости, теория пластичности, теория ползучести, аэрогидроупругость, механика грунтов и сыпучих материалов, механика горных пород и др. В механике деформируемого твердого тела принимается классификация науки по объектам изучения теория стержней и брусьев (основные объекты традиционного курса сопротивления материалов), теория пластин, теория оболочек, прочность машиностроительных конструкций, прочность строительных конструкций и т. д. Классификация по характеру деформированных состояний привела к теории колебаний, теории  [c.6]


В отличие от задач динамической прочности, где объектом исследования является напряженное состояние отдельной детали, при расчете вибраций машиностроительных конструкций одновременно приходится рассматривать всю совокупность деталей механизма, его корпус, опорную раму или фундамент, а также связанные с ними строительные конструкции или корпус транспортного средства, причем зачастую виброактивность определяют точки системы, где уровни вибрации на 20—40 дб ниже, чем в окрестности источника возбуждения этих колебаний. Расчетные методы оценки уровней вибраций таких систем немыслимы без применения современных мощных ЭЦВМ.  [c.3]

Вторая глава посвящена теоретическому и экспериментальному определению частотного диапазона применимости предлагаемых методов расчета элементов машиностроительных конструкций, в частности стержней и амортизаторов. Приводится необходимая для расчета вынужденных колебаний конструкций экспериментальная информация о демпфирующих свойствах балок с антивибрационными покрытиями, о потерях энергии при колебаниях в разъемных соединениях и амортизаторах. Анализируются результаты экспериментальных исследований жесткости амортизаторов в области частот 0,01—10 Гц и различной асимметрии цикла нагружения. Делается попытка оценить предельную виброизоляцию резинометаллических амортизаторов.  [c.5]

КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ  [c.59]

Расчетную модель машиностроительной конструкции можно представить совокупностью взаимосвязанных простейших элементов, таких, как масса, жесткость, стержень, пластина или оболочка. Колебания этих элементов описываются достаточно простыми математическими зависимостями. Линейные размеры подсистемы, представляемой простейшим элементом, зависят от расчетной частоты, и с ее увеличением для удовлетворительной точности решения систему приходится разделять на все большее число элементов. Так, например, тонкостенная сварная балка в области низких частот может рассматриваться как сосредоточенная масса, в области средних частот — как стержень, а на высоких частотах — как набор пластин. Частотный диапазон применения стержневой модели значительно расширяется, если учесть сдвиг и инерцию поворота сечений при изгибе и кручении. Эти поправки особенно существенны для балок с малым отношением длины к высоте, набором которых можно представить балку переменного поперечного сечения.  [c.59]


Вибрационные напряжения деталей, особенно в области средних и высоких частот, как правило, не превышают 20 кгс/см. При таких напряжениях машиностроительную конструкцию можно рассматривать как линеаризированную упруговязкую систему, расчетные коэффициенты поглощения материала которой учитывают потери в материале и соединениях деталей. Как было показано в главе 1, расчет колебаний демпфированных конструкций может производиться разложением амплитудной функции в ряд по собственным формам недемпфированной системы или методом динамических податливостей и жесткостей с комплексными модулями упругости. Последние методы особенно предпочтительны для неоднородных систем, с различными коэффициентами поглощения в подсистемах (например, амортизированные балочные конструкции).  [c.101]

Методы измерений и используемая аппаратура определяются размерами исследуемого объекта и целью выполнения работы. При лабораторных исследованиях динамических и демпфирующих характеристик материалов часто используется метод затухающих колебаний с записью сигналов от акселерометров или датчиков перемещения на пленку шлейфового осциллографа. Метод затухающих колебаний используется также при исследованиях динамических характеристик крупных объектов типа ферм и корпусов судов, когда из-за малой мощности возбудителей не удается создать достаточных для регистрации амплитуд колебаний на всей протяженности конструкции. Несмотря на простоту такого метода возбуждения, им трудно пользоваться при исследованиях машиностроительных конструкций, так как требуется длительное поддержание постоянного режима колебаний для обследования достаточно большого числа точек конструкции.  [c.145]

Рассмотрим вопросы статистической динамики систем, которые могут изменять свою структуру (параметры) в процессе колебаний при действии внешних возмущений. С исследованием подобных динамических систем особенно часто приходится сталкиваться при расчете машиностроительных конструкций на интенсивные динамические нагрузки типа сейсмических, тепловых, ветровых и т. п.  [c.275]

КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИИ  [c.336]

КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЯ  [c.358]

Снижение уровней вибраций машиностроительных конструкций является составной частью мероприятий по защите окружающей среды. Динамические силы, возникающие в местах сопряжения деталей движения, в потоках жидкости и газа или в изменяющихся во времени электромагнитных полях, вызывают колебания деталей и корпусов механизмов, которые через опорные и неопорные связи возбуждают колебания фундамента, перекрытия или корпуса транспортного средства. На всем пути распространения колебательная энергия излучается в окружающую среду.  [c.3]

Создавая методы расчета колебаний больших систем, приходится упрогцать расчетные модели отдельных деталей и узлов. Эти упрогцения идут по пути линеаризации подсистем и внешних нагрузок, замены гистерезисных потерь колебательной энергии в сочленениях деталей упруговязкими, рассмотрения части подсистем как абсолютно жестких и пренебрежения колебаниями по некоторым степеням свободы. Вместе с тем расчет колебаний больших систем имеет свои специфические задачи разработка расчетных моделей элементов конструкций и накопление необходимой для них экспериментальной информации создание типовых алгоритмов расчета для широкого класса машиностроительных конструкций оптимальное разделение системы на подсистемы, объем которых определяется оперативной памятью ЭЦВМ создание моделей и алгоритмов расчета, обеспечиваюгцих необходимую точность вычисления и соответствие результатов основным характеристикам реального процесса распространения колебаний оценка зависимости результатов расчета от точности задания исходной информации об отдельных элементах создание алгоритмов расчета, обеспечивающих минимальное время вычислений на ЭЦВМ и т. п.  [c.4]

Методы расчета колебаний машиностроительных конструкций в области низких частот, где основные части системы могут рассматриваться как абсолютно жесткие, достаточно подробно изложены в работах Дж. П. Ден-Гартога, С. П. Тимошенко, Н. М. Бабакова и Я. Г. Пановко. Методы расчета амортизированных систем рассматривались в работах Н. Г. Беляковского и Н. И. Клюкина.  [c.4]


Основные методы расчета вибраций машиностроительных конструкций приведены в третьей главе. Метод расчета стержневых систем основан на использовании элемента, состоящего из балки с распределенными параметрами, к концу которой подсоединена двухмассовая система, причем каждая масса обладает тремя степенями свободы. Из таких элементов могут набираться системы типа амортизированных рам, корпусов и многоопорных роторов. В качестве примера рассматриваются колебания турбогенератора с трехопорным ротором. Анализируется влияние на виброактив-  [c.5]


Смотреть страницы где упоминается термин Машиностроительные конструкции Колебания : [c.650]    [c.4]    [c.62]    [c.159]    [c.338]    [c.366]    [c.382]    [c.362]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.339 , c.340 , c.341 , c.342 , c.343 , c.344 , c.345 , c.346 , c.347 , c.348 , c.349 , c.350 , c.351 , c.352 , c.353 , c.354 , c.355 , c.356 , c.357 , c.358 , c.359 , c.360 , c.361 , c.362 , c.363 , c.364 , c.365 , c.366 , c.367 , c.368 , c.369 , c.370 , c.371 , c.372 , c.373 , c.374 , c.375 , c.376 , c.377 , c.378 , c.379 , c.380 , c.381 , c.382 , c.383 , c.384 , c.385 , c.386 , c.387 , c.388 , c.389 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.339 , c.389 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.339 , c.340 , c.341 , c.342 , c.343 , c.344 , c.345 , c.346 , c.347 , c.348 , c.349 , c.350 , c.351 , c.352 , c.353 , c.354 , c.355 , c.356 , c.357 , c.358 , c.359 , c.360 , c.361 , c.362 , c.363 , c.364 , c.365 , c.366 , c.367 , c.368 , c.369 , c.370 , c.371 , c.372 , c.373 , c.374 , c.375 , c.376 , c.377 , c.378 , c.379 , c.380 , c.381 , c.382 , c.383 , c.384 , c.385 , c.386 , c.387 , c.388 , c.389 ]



ПОИСК



КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ (канд. техн. наук Тетельбаум)

КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ Колебания высоких балок

Колебания конструкции

Колебания элементов машиностроительных конструкций

МЕТОДЫ РАСЧЕТА ВИБРАЦИЙ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ Методика расчета колебаний амортизированных балочных систем и плоских рам

Машиностроительные конструкции 1Элементы — Колебания

Элементы из неметаллических материалов машиностроительных конструкций — Колебания



© 2025 Mash-xxl.info Реклама на сайте