Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб силой. Линейная задача

ИЗГИБ СИЛОЙ. ЛИНЕЙНАЯ ЗАДАЧА  [c.199]

Изгиб СИЛОЙ. Линейная задача  [c.199]

В силу линейности задач теории упругости решение задачи об определении напряженного и деформированного состояний балки под действием произвольно направленного момента М можно получить как сумму решений трех задач задачи о кручении под действием момента М и двух задач об изгибе балки под действием моментов Му и М - Ясно, что последние две задачи об изгибе балки, по существу, совершенно аналогичны. Рассмотрим подробно задачу об изгибе балки под действием заданного момента М = М, когда Му. = Му = 0. При этом, как обычно, будем считать момент М положительным, если поворот, возникающий под действием М, виден с конца оси 2 совершающимся против часовой стрелки.  [c.351]


Вследствие линейности задачи можно использовать принцип независимости действия сил применительно к двум изгибам в произвольных плоскостях хОг и уОг и кручению относительно линии, проходящей через центры изгиба поперечных сечений.  [c.342]

Работа внешней нагрузки в процессе изгиба в данной задаче имеет две составляющие. Первая возникает за счет линейного перемещения силы Р, а вторая — за счет поворота равной Мо пары сил, приложенных по концам стержня. Поэтому статическая характеристика стержня при следящем перемещении изгибающей силы будет состоять из двух графиков  [c.143]

При выводе формул для чистого изгиба прямого стержня не было сделано произвольных допущений и найденное решение в этом смысле можно рассматривать как точное. Однако следует иметь в виду, что в рассматриваемой задаче не конкретизирован характер распределения внешних сил. Считается только, что во всех случаях эти силы сводятся к равнодействующим моментам, приложенным к торцам стержня. Решение будет точным только для случая, если внешние силы на торцах распределены по тому же линейному закону, что и во всех поперечных сечениях. Практически это условие, понятно, никогда не соблюдается, и в окрестности торцевых сечений законы распределения напряжений далеки от тех, которые следуют из теории чистого изгиба. В соответствии с принципом Сен-Венана имеется возможность, однако, краевую зону исключить, как это показано, например, на рис. 4.18. Тогда для средней части стержня все выведенные выше формулы сохраняют свою силу и могут рассматриваться как точные.  [c.174]

В работе рассмотрен пример частной задачи изгиба парой сил составного призматического бруса (круглого сечения) при линейных физических и квадратичных геометрических зависимостях.  [c.432]

В то же самое время важная работа по математической теории упругости была выполнена в России X. С. Головиным, который в 1882 г. опубликовал свое исследование об изгибе кривых стержней постоянного прямоугольного поперечного сечения. Трактуя вопрос как двумерную задачу, X. С. Головин смог получить решение для случая чистого изгиба кривого стержня и для случая изгиба при действии силы, приложенной на конце. Он показал, что распределение напряжений не зависит от значений упругих констант и для обычно применяемых пропорций арок оно примерно линейно также, как и в случае прямых балок.  [c.658]

Мы получили ряд решений плоской задачи для случая пластинки, ограниченной прямоугольным контуром. Каждому найденному решению соответствуют вполне определенные условия закрепления и вполне определенное распределение усилий по контуру. Например, в случае изгиба балки силой, приложенной на конце, мы предполагали закрепление одной точки и одного линейного элемента, проходящего через эту точку на левом конце балки, и нашли распределение напряжений в том предположении, что касательные усилия, приложенные к правому концу балки, изменяются по высоте балки по параболическому закону. Если способ закрепления балки будет отличаться от принятого нами или изгибающая сила Q будет распределена по какому-либо иному закону, то полученное нами решение не будет точным решением соответствующей задачи теории упругости. Однако во многих технически важных задачах им можно будет пользоваться для приближенного определения напряжений. Например, его можно применить к тому случаю, когда все точки опорного сечения балки закреплены и сила Q распределена любым образом по плоскости нагруженного концевого сечения балки. При этом погрешности будут тем меньше, чем меньше высота балки по сравнению с ее пролетом.  [c.83]


Отметим в заключение, что задача о контакте линейно упругой балки с жестким штампом может быть решена точно [6], и из точного решения видно, что в действительности плотного прилегания штампа к балке, как правило, нет — зона контакта представляет собой набор точек, а реакция д х) является набором сосредоточенных сил в этих точках. Отмеченное обстоятельство не что иное, как следствие основных гипотез теории изгиба балок.  [c.96]

В связи с этим весьма актуальной является задача определения больших перемещений при изгибе, когда в процессе изгиба тонкой детали сильно изменяется ее первоначальная конфигурация, причем перемещения при изгибе становятся соизмеримыми с длиной самой детали. Здесь наблюдается существенно нелинейная зависимость больших перемещений от внешних сил, хотя деформации остаются малыми и материал работает упруго. В связи с этим целый ряд важных для практики особенностей поведения гибких деталей и возможных форм упругой линии при изгибе с большими перемещениями не может быть изучен даже качественно с помощью обычной линейной теории изгиба.  [c.5]

В случае изгиба и кручения бесконечно длинной балки на линейном комбинированном основании сохраняют силу системы (2.14) и (2.20), с заменой К х, у) выражением (1.12), что приводит к интегральным уравнениям второго рода. При этом ключевое интегральное уравнение (2.17) тоже становится уравнением второго рода. Задачу об изгибе бесконечной балки иа упругом комбинированном основании (1.9) рассмотрел В. Л. Рвачев [88]. Однако здесь в отличие от обычного полупространства ему не удалось получить точного решения. Им указано асимптотическое приближенное решение для больших н малых к.  [c.293]

Изгиб пластины, ослабленной трещиной с контактирующими кромками при динамическом нагружении. Пусть пластина са сквозной трещиной длиной 21 нагружена произвольной динамической нагрузкой р х, t), перпендикулярной срединной поверхности. Задача рассматривается в рамках линейной теории пластин Кирхгофа, поэтому в силу принципа суперпозиции ее можно разбить на две задачу о действии нагрузки р х, t) на пластину без трещины и на задачу о пластине с трещиной, к берегам которой приложены изгибающие моменты Мп (х, t) и поперечные силы 0 (, f), ж g у й (действием крутящего момента на берегах трещины пренебрегаем), вычисленные при рещении первой задачи, где й и й — противоположные берега трещины, п = щ, — нормаль к Й у Й .  [c.76]

Метод Тимошенко, широко применённый им в исследованиях упругой устойчивости пластинок и оболочек, вполне применим и в задачах устойчивости пластин за пределом упругости, поскольку зависимости (5.99) между моментами и кривизнами являются линейными, и работа внутренних сил при изгибе согласно (5.100) является однородной квадратичной формой параметров -/j, /2, Гд. Метод со-  [c.306]

Неединственность решения статической линейной задачи может быть обусловлена тем, что равновесие тела нейтрально (неустойчиво). Это может случиться, например, при действии цепных сил (напряжений, входящих в качестве параметров в уравнения (3.2), которые оказываются линейными относительно дополнительных перемещений и напряжений, если цепные силы не зависят от искомых функций). При этом решение соответствующих динамических задач единственно. Действительно, если равновесие неустойчиво, то в отношении некоторых (низших) форм отклонения однородные уравнения допускают решения вида % (х, у, z) ехр (ant), Rea O или tVfi (х, у, г) (нейтральное равновесие). Предположим теперь, что уравнениям задачи с определенными начальными и граничными условиями удовлетворяют два решения, и рассмотрим их разность и (/, х, у, г), которая в силу линейности задачи удовлетворяет нулевым начальным и однородным граничным условиям. Предположим, кроме того, что степень неустойчивости (Rean) равномерно ограничена, т. е. Rea М, где М не зависит от п. Например, при изгибе стержня, свободно опертого в точках л = О, л и сжатого силой Q, уравнение  [c.158]


В силу линейности исследуемых систем уравнений можно разыскивать решение, соответствующее системе вне1лних нагрузок, эквивалентных Р и М в виде суммы частных решений, соответствующих отдельным компонентам векторов Р н М. Решение, соответствующее компоненту Рз, — известное решение элементарной задачи о растяжении стержня продольной силой. Задача, соответствующая компоненту М , называется задачей кручения, две различные задачи, одна из которых соответствует компоненту Р или Ра. а вторая —Ajj или М , называют задачами об изгибе стержней концевой силой и моментом.  [c.64]

НаибС Лее эффективный метод решения задачи об изгибно-крутильных деформациях тонкостенногс стержня сводится к следующему. Нужно привести все внешние силы к линии центров изгиба (центров кручения). Раздельно решить задачи а) продольного растяжения—сжатия под действием продольных сил, б) изгиба в плоскостях 0x2, Оуг с учетом внецентренности приложения продольных сил, в) кручения. Ввиду линейности задачи (геометрически линейна ввиду малости перемещений и поворотов, физически линейна ввиду использования линейного закона упругости — закона Гука) результаты этих решений сложить по напряжениям, деформациям и перемещениям.  [c.338]

Принципиальное отличие силовых граничных условий задач устойчивости от силовых граничных условий линейных задач поперечного изгиба выявляется тогда, когда на торец стержня передаются сосредоточенные внешние усилия. Оно обусловлено тем, что в задачах устойчивости рассматриваются условия равновесия в отклоненном, искривленном положении системы. Поэтому, если, например, к незакрепленному торцу стержня приложена мертвая осевая сила Р, то условие равновесия примыкающего к торцу элемента (рис. 3.2), составленное для его отклоненного положения (в проекции на ось у), приводит к куравнению i.Q — Nqv =0. В данном случае, когда 0 = —Р, получим граничное условие EJv ) Pv = О при  [c.81]

МЫ переходим к более общему случаю изгиба поперечными нагрузками, задача становится более сдоншой. Ясно, что под влиянием касательных напряжений, соответствующих перерезывающим силам N- и появятся сдвиги, которые вызовут искривление линейных элементов, перпендикулярных к срединной плоскости. Под влиянием нагрузки, лежащей на пластинке, наверное, возникнут напряжения Zz, которые соответствуют надавливанию друг на друга слоев пластинки, параллельных срединной плоскости. Очевидно, что вследствие этих надавливаний срединная плоскость пластинки может испытать некоторые деформации в своей плоскости и уже не будет играть роль нейтрального слоя.  [c.383]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Решение задачи об изгибе консоли (раздел 2 настоящего параграфа) показало, что, если поперечная сила во всех поперечных сечениях одинакова (Qy = onst), то одинаковыми оказываются и возникающие в результате деформации искривления (деплана-ции) всех поперечных сечений. При этом функция оказывается линейной и точно такою же как и в условиях применения гипотезы плоских сечений. Если же Qy ф. onst, то, как показало решение задачи об изгибе балки на двух опорах равномерно распределенной нагрузкой (раздел 3 настоящего параграфа), искривления (депланация) поперечных сечений не одинакова по длине балки, но мало изменяется при переходе от одного сечения к другому и функция вследствие этого отличается от линейной несущественно.  [c.165]

Представим пластину в прямоугольной системе координат, совместив еесрединн5гю плоскость с координатной плоскостью ху (рис. 2.16, а). Будем считать, что толщина h пластины существенно меньше размеров пластины в плоскости ху. Задачу изгиба такой пластины поперечными силами рассмотрим в линейной постановке, как была рассмотрена более простая осесимметричная задача (см. 2.4), Причем для вывода соотношений, описывающих изгиб пластины, снова воспользуемся основными допущениями теории пластин и оболочек.  [c.60]


Функция напряжений, нечетная по 0, линейна по г но нечетной бигармоннческой функцией, пропорциональной г, исключая тривиальную г sin 0, является С0г os 0, дающая по (4.1.7) решение задачи об изгибе клина сосредоточенной в его вершине силой. Поэтому в задаче об изгибе моментом функцию напряжений следует принять зависящей только от 0 такой функцией, удовлетворяющей краевым условиям (4.3.1), является  [c.538]

Устойчивость сжатых стержней переменного сечения. Влияние местных ослаблений. В случае сжатого стержня переменного сечения для определения критической силы необходимо интегрировать уравнение (12.1) при моменте инерции сечения, переменном по длине стержня. Так как при этом приходится иметь дело с линейным уравнением вто-poro порядка, коэффициенты которого переменны, задача становится сложной. Можно, однако, при-Рис. 219. менить приближенный прием определения критической силы, который, как показывает сравнение решений, получаемых в ряде частных случаев, дает достаточно хорошие результаты. Так, если наибольший момент инерции сечений стержня превосходит наименьший вдвое, то применение приближенной формулы приводит к ошибке в величине критической силы около 2%, а при /max//min = 1,25 этз ошибкз составит 1%. Сущность этого приема сводится к тому, что стержень переменного сечения заменяется стержнем постоянного сечения, который при изгибе по синусоиде при одинаковой нагрузке дает прогиб той же величины, что и данный стержень.  [c.350]

В постановке задачи упоминается энергия сжатия, которая в анализе [83, 116] не фигурирует, как если бы она не зависела от изгиба (в данном случае — малого линейного приближения). Поэтому найденное энергетическим методом в работах [83, 116] эйлерово значение критической силы  [c.176]

Важно заметить, что здесь рассматривается статическое приложение сил и моментов, т. е. большие перемещения при изгибе рассматриваются как непрерывная последовательность состояний (упругого равновесия изогнутого стержня в плоскости при постепенном изменении нагрузки. При расчете динамического поведения (колебаний) указанные статические характеристики стержня будут служить исходными нелинейными характеристиками, которые приведут соответственно к решению нелинейных динамических задач. При рассмотрении же малых колебаний упругого стержня около любого из его изогнутых состояний можно применить линейную теорию колебаний, взяв линейн(ую статическую характеристику в виде отрезка касательной в точке криволинейной характеристики, соответствующей центру колебаний.  [c.11]

В предыдущем примере подробно исследована задача устойчивости форм равновесия упругой линии консольно закрепленного стержня, изгибаемого силой Р в плоскости, при больших перемещениях. Был взят угол наклона силы у = 40° к первоначальной оси стержня. Подобным же образом производится исследование устойчивости форм упругой линии и при любом другом угле наклона силы 0<у<180°. Это — так называемый продольно-поперечный изгиб консоли. Случай поперечного изгиба (Y = 90°), который в обычной линейной теории изгиба балок яв-  [c.96]

Как отмечено уже выше, методы, развитые здесь для простейшего случая, могут быть углублены в направлении разыскания распределения напряжений линейных или квадратичных и т. д. относительно г. Таким путем можно получить, задава гсь линейным относигельно г распределением напряжений по оси г, напряженное состояние стержня, закрепленного на одном конце и изгибаемого силой на свободном конце, из квадратичного распределения напряжения относительно г получается напряженное состояние стержня при изгибе под действием его собственного веса. Эти задачи удобнее решать, исходя из напряжений, а не из перемещений, так как в последнем случае степень зависимости от г повышается на единицу.  [c.117]

Точные уравнения равновесия (движения) сплошной среды и соотношения между деформациями и перемещениями в переменных Лагранжа выведены в известной монографии В. В. Новожилова [71.. Возможность перехода к линейным соотношениям открывается в случае, когда справедлив закон Гука — напряжения линейно зависят от деформаций (физическая линейность) — и деформации и углы поворота малы по сравнению с единицей (геометрическая линейность). Кроме того, необходимо еще одно условие линейные члены в уравнениях должны быть достаточно большими по сравнению с нелинейными. Так, при анализе сложного изгиба тонкостенных конструкций (изгиба при наличии растяжения или сжатия) в уравнениях равновесия, вообще говоря, нельзя пренебречь произведениями цепных сил на углы поворота — нелинейными членами, как бы ни малы были деформации и повороты. Здесь существует, однако, класс задач, в которых цепные усилия можно считать не зависящими от поперечного изгиба. В последнем случае уравнения становятся линейными (цепные усилия входят в них в качестве параметров). В динамике указанный класс суживается. Например, если статичес-  [c.25]

Проверить сделанное предположение в общем случае затруднительно. Но в. рамках деформационной теории оно, как было вцдно, оправдано. Оно должно выполняться и при пропорциональном нагружении элемента. Использование условия Треска совместно с принципом градиентальности во многих конкретных задачах удобней, чем условия Мизеса, в силу его кусочной линейности. Это обстоятельство легко может быть проиллюстрировано на примере осесимметричного изгиба круглой пластинки.  [c.112]

Применение общих теорем Лагранжа и Кастильяно к системам, для которых связь между внешними силами и перемещениями точек их приложения нелинейна, будь это вследствие того, что рассматриваются пластические деформации, или, как в примере предыдущего параграфа, вследствие того, что уравнения статики должны составляться для деформированного состояния, все равно наталкивается, на значите.1 ьные трудности. В нашем курсе мы ограничимся линейными упругими системами, то есть системами, элементы которых подчиняются закону Гука, сочленения осуществлены без трения и малость деформаций позволяет составлять уравнения статики для недеформированного состояния. При этих условиях, как мы выяснили в 32, перемещения и силы связаны линейными соотношениями. Легко видеть, что это относится в той же мере к изгибу и кручению, так как вёзде в этих задачах мы имеем дело с линейными функциями от сил. Исключение представляет случай продольно-поперечного изгиба там выражение для поперечного изгиба зависит от продольной силы сложным образом, через трансцендентные функции. Легко понять, в чем тут дело. При составлении дифференциального уравнения продольно-поперечного изгиба мы принимаем момент от продольной силы равным произведению силы на прогиб, то есть определяем статический фактор с учетом происшедшей деформации.  [c.336]

Если цилиндрическая оболочка со свободными краями испытывает равномерное изменение температуры, то никаких температурных напряжений не возникает. Но если края оперты или защемлены, это будет препятствовать свободному расширению оболочки и на краях возник-н)гг местные напряжения изгиба. Предположим, например, что края длинной цилиндрической трубы защемлены тогда поперечные силы и изгибающие моменты на краях получатся такие же, как в задаче 2, п. 26. Необходимо лишь подставить в уравнение этой задачи величину 8 = га , представляющую собой увеличение радиуса оболочки вследствие температурного расширения. Если длина трубы невелика и одновременно должны рассматриваться оба конца- то изгибаюш,ие моменты и поперечные силы могут быть легко получены при помощи результатов задачи 8 п. 26. Рассмотрим теперь случай, когда происходит изменение температуры в радиальном направлении. Предположим, что и 4 — постоянные температуры цилиндрической стенки соответственно на внутренней и нар)гжной поверхностях и что изменение Температуры по толщине стенки происходит по линейному закону. Тогда в точках, удаленных на большое расстояние от концов оболочки, не будет изгиба, и напряжение можно вычислить при помощи уравнения (87), стр. 81, выведенного для пластинки с заделанными краями. Эта формула дает следующее наибольшее напряжение от изгиба  [c.115]


В общем случае поставленная задача представляет собой пространств, задачу У. т., решение к-рой трудно осуществимо. Точные аналитич. решения имеются лишь для нек-рых частных задач об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конич. тела и др. Т. к. ур-ния У. т, являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип суперпозиции). В частности, если для к.-н. тела найдено решение при действии сосредоточенной силы в к.-л. произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и нек-рые др.). Предложен ряд аналитич. методов решения пространственной задачи У. т. вариационные методы (Ритца, Бубнова — Галёркина, Кастильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих методов решений пространственной задачи У. т.— одна из н-аиболее актуальных проблем У. т.  [c.788]


Смотреть страницы где упоминается термин Изгиб силой. Линейная задача : [c.88]    [c.262]    [c.130]    [c.146]    [c.410]    [c.404]    [c.148]    [c.235]    [c.422]    [c.488]    [c.57]    [c.252]    [c.34]    [c.509]   
Смотреть главы в:

Устройство оболочек  -> Изгиб силой. Линейная задача



ПОИСК



336 —-задачи об изгибе с задачей

Изгиб силой

Линейная задача



© 2025 Mash-xxl.info Реклама на сайте