Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубчатые зацепления с косозубыми колесами

Зубчатые зацепления с косозубыми колесами  [c.54]

Одноступенчатый цилиндрический зубчатый редуктор с косозубыми колесами (см. рис. 9.14) имеет следующие параметры А = 0,2 м т = 4 ММ-, 2i = 18 и Zj = 81. Найти угол наклона зубьев, если зацепление некорригированное.  [c.152]

Чтобы улучшить работу зубчатой передачи, т. е. обеспечить плавность и бесшумность хода при одновременном уменьшении числа зубьев и увеличении передаточного числа, были созданы цилиндрические зубчатые передачи с косозубыми колесами на параллельных валах. (Пара косозубых колес в зацеплении показана на рис. 86).  [c.105]


Уравнения движения линеаризованной схемы одноступенчатого редуктора с коническими прямозубыми колесами можно получить теми же методами, что и для цилиндрического редуктора с косозубыми колесами. Уравнение связи (неразрывности зацепления) конических колес зубчатого редуктора (рис. 16) можно представить в виде 2  [c.38]

Принцип построения большинства беззазорных зубчатых и червячных редукторов (или отдельных передач) заключается в том, что редуктор (передача) составляют из двух кинематически идентичных цепей, образующих замкнутый кинематический контур (рис. 64). В единичной зубчатой или червячной передаче одно зубчатое (червячное) колесо делают разрезным. Зазор устраняется взаимным разворотом половинок пружинами (рис. 64, а) или последующим жестким закреплением половинок болтами. Устранение зазоров и создание предварительного натяга в редукторе достигается взаимным разворотом его кинематических цепей специальным нагружающим устройством. В результате в каждой кинематической цепи получается однопрофильное зацепление, которое не нарушается и при реверсе движения (рис. 64, б). Нагрузка замкнутого контура часто осуществляется осевым смещением вала с косозубыми колесами пружиной или поршнем гидроцилиндра.  [c.589]

Передача вращения между параллельными валами производится посредством цилиндрических колес с прямыми, косыми (винтовыми) или шевронными зубьями. Прямозубые колеса значительно уступают косозубым и шевронным в отношении плавности работы и бесшумности, но обладают тем преимуществом, что их можно легко вводить в зацепление с сопряженным колесом или выводить из него путем перемещения вдоль вала. Для шевронных колес это невозможно, а для косозубых хотя и возможно, но связано с осложнением обработки шлицевого валика (винтовые шлицы), которая должна быть выполнена с очень высокой точностью, чтобы передвижение колеса не требовало чрезмерного усилия. Указанное преимущество прямозубых колес обеспечило им преобладающее положение в механизмах типа многоступенчатых редукторов — коробках скоростей, коробках подач и т. п. — с изменением скоростей посредством передвижения зубчатых колес вдоль валиков.  [c.242]

Коробка передач автомобиля ГАЗ-3102 Волга . Ведущий вал 3 (рис. 127) четырехступенчатой коробки передач автомобиля ГАЗ-3102 Волга зубчатым колесом постоянного зацепления связан с блоком 30 зубчатых колес промежуточного вала. Остальные зубчатые колеса этого блока находятся в постоянном зацеплении с косозубыми зубчатыми колесами 11, 12 и 16 соответственно третьей, второй и первой передач ведомого вала 22. Включение всех четырех передач переднего хода выполняют соединением скользящих муфт 9 я 13 синхронизаторов со шлицевыми венцами соответствующих зубчатых колес.  [c.201]


При окружных скоростях до 20 м/с в редукторах с прямозубыми колесами и до 50 м/с в редукторах с косозубыми колесами масло под давлением р Эг 0,15 кгс/см . направляется непосредственно на вход в зацепление. При больших скоростях подача масла производится отдельно на шестерню и колеса под давлением р 0,8 кгс/см . Практикуется также подача масла со стороны выхода зубьев из зацепления, где в быстроходных редукторах образуется зона разрежения, и га с торца зубчатых колес. Эти способы преследуют цель избежать гидравлического удара в тех случаях, когда несжимаемая жидкость не успевает растекаться по смазываемой поверхности зубьев. Зацепления реверсивных редукторов сматываются со стороны входа и выхода из зацепления. Помимо смазки зацеплений в быстроходных редукторах необходимо предусмотреть охлаждение тела шестерни и колес, предусматривая для этой цели дополнительный расход масла.  [c.261]

Хонингуемые прямозубые или косозубые цилиндрические колеса вращаются в плотном зацеплении с хоном. Зубчатое колесо кроме вращения совершает возвратно-поступательное движение вдоль оси (Snp). Направление вращения пары изменяется при каждом двойном ходе.  [c.383]

Начертите эскиз зубчатого зацепления, укажите на нем основные параметры и дайте наименования этих параметров для одной из передач а) с цилиндрическими прямозубыми колесами б) с цилиндрическими косозубыми колесами в) с коническими зубчатыми колесами г) червячной передачи с цилиндрическим червяком.  [c.176]

Для изготовления колес методом обкатки разработаны специальные высокопроизводительные станки. Он основан на воспроизведении зубчатого зацепления, одним из элементов которого является режущий инструмент, а другим элементом — заготовка зубчатого колеса. На рис. 18.11,в показана схема нарезания колеса, когда режущим инструментом является червячная фреза. На рис. 18.11,2 колесо нарезают зубчатой рейкой, а на рис. 18.11, д, е — дисковыми долбяком в виде зубчатого колеса, каждый зуб которого является резцом. Режущие свойства дол-бяка или рейки определяются углами заточки задним и передним -[г, (рис. 18.11, д/с). Кроме движения врезания и подачи инструменту и заготовке придается движение, как колесам, находящимся в зацеплении. При этом средняя линия рейки (или начальная окружность долбяка) перекатывается без скольжения по начальной окружности нарезаемого колеса в конце процесса нарезания зубьев. Эта окружность, по которой катится средняя линия рейки, называется также делительной окружностью колеса. Зацепление инструмента с нарезаемым зубчатым колесом называется станочным зацеплением. Червячным и реечным инструментом по методу обкатки можно нарезать прямозубые и косозубые колеса с внешним зацеплением, а долбяком можно нарезать прямозубые колеса с внешним и внутренним зацеп.ге-нием.  [c.190]

Для упрощения изготовления колес участки А, и заменяют цилиндрами, а участки Д, и Да усеченными конусами. Если на сопряженных участках гиперболоидов вдоль линий их контакта нарезать зубья с одинаковым нормальным шагом р и углом зацепления то получим зубчатые передачи с постоянным передаточным отношением. Передача с цилиндрическими косозубыми колесами на участке Д1 —Л, называется винтовой, частным случаем которой является червячная передача, а зубчатая передача на участке Д( — До в виде конических косозубых колес называется гипоидной зубчатой передачей. Чаще всего угол скрещивания осей валов этих передач 8 = 90°.  [c.241]

Червячной передачей называется механизм, служащий для преобразования вращательного движения между валами со скрещивающимися осями. Обычно червячная передача (рис. 8.1) состоит из червяка 1 и сопряженного с ним червячного колеса 2. Угол скрещивания осей обычно равен 90° неортогональные передачи встречаются редко. Червячные передачи относятся к передачам зацеплением, в которых движение осуществляется по принципу винтовой пары. Червячную передачу можно получить из рассмотренной ранее винтовой зубчатой передачи, если уменьшить число зубьев одного из косозубых колес до Zi = 1...4 и увеличить их угол наклона к оси, превратив  [c.163]


Расчет зубьев колеса на контактную прочность. Для расчета зубьев на контактную прочность в качестве исходной принимается формула Герца (10.3). Эта формула преобразовывается в соответствии с геометрическими особенностями червячного зацепления. Приближенно зацепление колеса G червяком в осевом сечении червяка можно рассматривать как зацепление косозубого колеса с зубчатой рейкой. При этом приведенный радиус кривизны р в точке контакта будет равен радиусу кривизны профиля зуба колеса р , так как для профиля червяка Р1 = со.  [c.200]

Коэффициент перекрытия. Геометрическая и кинематическая картины начала (входа) и конца (выхода) зацепления косозубых колес резко отличаются от начала и конца зацепления колес с прямыми зубьями. Попадая в зону нагрузки, т. е. в рабочую часть линии зацепления (рис. 6.28), элементы зубчатого профиля входят в зацепление постепенно. За счет этого, а также за счет уменьшения деформации зубьев обеспечивается большая плавность работы зубчатой пары.  [c.246]

Компоненты силы давления в зацеплении косозубых цилиндрических колес. Зубчатое зацепление представляет собой высшую кинематическую пару с линейным или точечным контактом. Чтобы оценить работоспособность такой пары, нужно знать контактное напряжение Оя, а для этого необходимо уметь находить интенсивность давления, нормального к боковой поверхности зуба, приходящегося на единицу длины линии контакта. Это распределенное давление изображает действие на рассматриваемое колесо другого колеса передачи. Нужно также найти и равнодействующую этого распределенного давления, чтобы в дальнейшем определить нагрузку на валы и опоры.  [c.252]

В цилиндрических колесах с прямыми зубьями соприкасание двух сопряженных профилей происходит по прямой, параллельной осям колес. Рассечем зубчатое колесо с прямыми зубьями на равные части плоскостями, перпендикулярными к оси колеса (рис. 232, а). Каждый из полученных дисков сдвинем один относительно другого на один и тот же угол. Если увеличить число ступеней до бесконечности, то получим колесо с винтовыми, или косыми, зубьями (рис. 232,6). Два сопряженных колеса должны иметь равные углы наклона р линии зуба. При внешнем зацеплении винтовая линия на одном колесе должна быть правой, а на другом - левой. Если два таких колеса привести в соприкасание, то одновременно в зацеплении будут находиться различные участки профилей, дуга зацепления возрастет на величину смещения зубьев по начальной окружности, т. е. увеличится коэффициент перекрытия ф , а это приведет к распределению нагрузки на несколько зубьев. В результате повысится нагрузочная способность, увеличится плавность работы передачи и уменьшится шум. Эти обстоятельства определили преимущественное распространение в современных передачах косозубых колес.  [c.253]

Цилиндрические прямозубые, косозубые и шевронные колеса с канавкой посередине зуба нарезают главным образом червячными модульными фрезами на зубофрезерных станках (рис. 16.10, а). Для обработки червячных колес также применяются червячные фрезы, получающие радиальную и тангенциальную подачи. С помощью долбяков (рис. 16.10, бив) возможна обработка зубчатых колес как с внешним зацеплением, так и с внутренним, прямозубых и косозубых колес.  [c.322]

При струйной смазке горизонтальных зубчатых передач с помощью сопел и окружной скорости колес меньше 12 м сек масло подводится к зубчатому зацеплению всегда сверху вне зависимости от направления вращения зубчатых колес. В вертикальных зубчатых передачах при окружной скорости меньше 12 м сек масло может подаваться на зацепление с любой стороны независимо от направления вращения. При больших окружных скоростях в косозубых и шевронных передачах масло рекомендуется подводить со стороны входа зубьев в зацепление, а в прямозубых передачах — со стороны выхода. Подвод масла в прямозубых передачах со стороны входа зубьев в зацепление не рекомендуется вследствие вредного влияния запирания масла между зубьями на контактную усталость зубьев. В шестеренных клетях реверсивных двухвалковых станов (например, блюмингов) масло обычно подводится сверху на верхний шестеренный валок. При подаче масла в зону зацепления сопла обычно устанавливаются по биссектрисе угла, образованного касательными к окружностям головок колеса и шестерни, построенными в точке пересечения этих окружностей (фиг. 2, б). Чаще всего при-  [c.11]

Поэтому для определения величины возбуждения разобьем находящуюся в зацеплении зубчатую пару плоскостями, перпендикулярными оси вращения колес на ряд косозубых колес с элементарной шириной dB (рис. 1), для которых величиной изменения ошибки по длине зуба можно пренебречь. Тогда усилие Р в каждой i-й зубчатой паре dB-ro сечения можно записать как [3]  [c.106]

Д о л б я к и применяются для нарезания а) прямозубых и косозубых зубчатых колес наружного и внутреннего зацепления б) зубчатых венцов у шевронных колес с канавкой и без нее  [c.382]

Предназначаются для нарезания косозубых цилиндрических зубчатых колес наружного зацепления с углом зацепления исходного контура 20° в нормальном сечении и с номинальным углом наклона винтовой линии 15 или 23°  [c.186]


Нарезание косозубых колес отличается от нарезания прямозубых колес тем, что по мере возвратно-поступательного движения долбяк получает дополнительный поворот от специального копира с винтовыми направляющими (при обработке прямозубых колес направляющие копира прямолинейные). Для нарезания косозубых колес внешнего зацепления долбяк должен быть также косозубым с тем же углом наклона, но с противоположным направлением. Колеса с правым направлением зубьев нарезают левым долбяком, а колеса с левым направлением — правым долбяком. При обкатке долбяк и заготовка вращаются в разных направлениях. Для сопряженной зубчатой передачи необходимо иметь два комплекта направляющих один для колеса с правым наклоном зуба, другой для колеса с левым наклоном. Направление винтовых направляющих совпадает с направлением зубьев долбяка, а угол наклона — как у зубьев нарезаемого колеса. Шаг Я (ход) направляющих копира равен шагу винтовой линии долбяка, который зависит от угла наклона линии зуба долбяка и его диаметра делительной окружности. Отношение шага Я направляющих копира к шагу Р винтовой линии зубьев нарезаемо-  [c.345]

Зубчатые передачи между параллельными валами осуществляются цилиндрическими колесами с прямыми, косыми или шевронными зубьями (рис. 11.1, а—г). Эти передачи называют цилиндрическими. Существуют цилиндрические передачи внешнего зацепления (прямозубые, косозубые, шевронные) и цилиндрические передачи (рис. 11.1, б) внутреннего зацепления (прямозубые, косозубые).  [c.230]

В сечении А-А (см. рис. 11.8) косозубое колесо имеет эвольвентный профиль, обеспечивающий зацепление в косозубой передаче подобно зацеплению прямозубой эвольвентной передачи. В прямозубом колесе линия контакта зубьев параллельна оси цилиндра, в косозубом — линия контакта зубьев расположена под углом наклона р. Косозубые зубчатые передачи по сравнению с прямозубыми обладают большей нагрузочной способностью, плавностью работы, меньшим шумом, но наклон зубьев приводит к возникновению осевой силы, нагружающей опоры и валы передачи.  [c.240]

Червячная передача — это механизм для передачи вращения зацеплением с непосредственным контактом витков червяка и зубьев червячного колеса (рис. 12.1). Червяк I — это винт с трапецеидальной или близкой к ней по форме резьбой. Червячное колесо 2 является косозубым зубчатым колесом с зубьями особой дуговой формы. Такая форма зубьев обеспечивает увеличение длины и прочности зубьев на изгиб.  [c.321]

Для осмотра зубьев зацепления и залива масла при сборке в крышке предусматривается смотровое окно, закрываемое крышкой 1. Для залива масла в процессе эксплуатации имеется отверстие, закрываемое пробкой 3. Для циркуляционного смазывания установлено сопло 4 (при смазывании колес погружением сопло отсутствует). Масло сливается через отверстие в нижней части корпуса, закрываемое пробкой 18. Для контроля за уровнем масла предусмотрена контрольная пробка 19. Большинство цилиндрических редукторов общего назначения изготовляют с косозубыми колесами эвольвентным зацеплением и зацеплением Новикова, которое по сравнению с эвольвентным обладает большей нагрузочной способностью. Редукторы с шевронными зубчатыми колесами (рис. 3.2) из-за сложности изготовления применяют реже, главным образом при тяжелонагруженных и высокоответственных передачах.  [c.22]

Сравнительно новым процессом (разработан ВНИИАШ) является абразивное хонингование закаленных зубчатых колес. Хон имеет форму косозубого долбяка и находится в зацеплении с обрабатываемым колесом. Хон совершает вращательное движение со скоростью 7—10 м1сек и колебательные движения с частотой 200—300 кол сек и амплитудой до 1,5 мм. Зубчатое колесо получает вращение от хона и совершает возвратно-поступательные движения со скоростью 2—3 дв-хода мин. Хонингование повышает чистоту отделки зубьев на 1—2 класса и частично исправляет их геометрические погрешности, возникшие при термической обработке.  [c.370]

М. Л. Новиков предложил косозубое зацепление с неэвольвент-ными профилями зубьев. Зубья располагаются по некоторым винтовым линиям, имеющим равные углы наклона р (рис. 22.52). На рис. 22.52 показаны две винтовые линии, лежащие на начальных цилиндрах колес 1 к 2. Дуги Ра и Ра , на которые перекатываются цилиндры, всегда равны между собой. Вместо плоскости зацепления М. Л. Новиков ввел линию зацепления Сд—Сд, расположенную параллельно осям начальных цилиндров. Сопряженные профили зубьев колес 1 w 2 последовательно входят в зацепление в точках С, С", С ",. .., и, таким образом, в этом случае применяется не линейное, а точечное зацепление. При этом нормаль в точке касания пересекает в соответствующей точке, например Р", прямую Р—Р касания начальных цилиндров, и тем самым всегда сохраняется заданное передаточное отнон1ение. Профили зубьев зубчатого зацепления Новикова вообще могут быть выполнены по различным кривым. Наиболее простыми, как показали исследования, являются профили, очерченные в торцовом сечении по окружностям.  [c.473]

В процессе нарезания зубчатых колес на поверхностях зубьев возникают погрешности профиля, появляется неточность шага зубьев и др. Для уменьшения или ликвидации погрешностей зубья дополнительно обрабатывают. Отделочную обработку для зубьев иезакалепных колес называют шевингованием. Предварительно нарезанное прямозубое или косозубое колесо 2 плотно зацепляется с инструментом 1 (рис. 6.112, а). Скрещивание их осей обязательно. При таком характере зацепления в точке А можно разложить скорость на составляющие. Составляющая v направлена вдоль зубьев и является скоростью резания, возникающей в результате скольжения профилей. Обработка состоит в срезании (соскабливании) с поверхности зубьев очень тонких волосообразных стружек, благодаря чему погрешности исправляются, зубчатые колеса становятся более точными, значительно сокращается шум при пх работе. Отделку проводят специальным металлическим инструментом — шевером (рис. 6.112,6). Угол скрещивания осей чаще всего составляет 10—15°. При шевинговании инструмент и заготовка воспроизводят зацепление винтовой пары. Кроме этого, зубчатое колесо перемещается возвратно-поступательно (s,,,,) и после каждого двойного хода подается в радиальном направлении (S(). Направления вращения шевера (Ущ) и, следовательно, заготовки (Узаг) периодически изменяются. Шевер режет боковыми сторонами зубьев, которые имеют специальные канавки (рис. 6.112, в) и, следовательно, представляют собой режущее зубчатое колесо.  [c.382]

Цилиндрические зубчатые передачи вн шнего и внутреннего зацепления с прямозубыми, косозубыми и шевронными зубчатыми колесами ГОСТ 1643—72 От 1 до 56 До 6300 От 3 до 12  [c.195]

Зубчатая цилиндрическая внешнег о и внутреннего зацепления с прямозубыми, косозубыми и шевронными зубчатыми колесами  [c.171]

Примером самоустанавливающегося в осевом направлении вала может служить один из валов шевро ной зубчатой передачи или косозубой цилиндрической с раздвоеньшм но типу и1евроиа зубчатым колесом (см. рис. 5.33). Самоуста Ювка этого вала осуществляется по зубчатому зацеплению, а ег( опоры должны быть свободными (плавающими) в осевом паи )авлении. Другой ж вал этих передач фиксируется на опорах, ) ричем обычно не требует точной установки в осевом иаправленин  [c.113]


Рис. 3. Условные и.чобрзжеиия. зацеплений по ГОСТ 2.402—60 а — косозубыми колесами шестерня 1 — с правовинтовыми зубьями, колесо 2 — с левовинтовыми зубьями 6 винтовыми цилиндрическими зубчатыми колесами, оси которых скрещиваются под прямым углом, т. е. р1 + Ра = О" при р, = Ра = 45 окружные модули шестерни 1 и колеса 2 одинаковы в винтовыми цилиндрическими зубчатыми колесами, оси которых скрещиваются под углом, отличающимся от прямого, т. е. Е < 90 (шестерня, ось которой наклонена к плоскости проекций, изображена начальной окружностью диаметра й ], совмещенной с плоскостью чертежа). Рис. 3. Условные и.чобрзжеиия. зацеплений по ГОСТ 2.402—60 а — <a href="/info/7661">косозубыми колесами</a> шестерня 1 — с правовинтовыми зубьями, колесо 2 — с левовинтовыми зубьями 6 <a href="/info/255966">винтовыми цилиндрическими зубчатыми колесами</a>, оси которых скрещиваются под прямым углом, т. е. р1 + Ра = О" при р, = Ра = 45 окружные <a href="/info/386645">модули шестерни</a> 1 и колеса 2 одинаковы в <a href="/info/255966">винтовыми цилиндрическими зубчатыми колесами</a>, оси которых скрещиваются под углом, отличающимся от прямого, т. е. Е < 90 (шестерня, ось которой наклонена к <a href="/info/1098">плоскости проекций</a>, изображена <a href="/info/194">начальной окружностью</a> диаметра й ], совмещенной с плоскостью чертежа).
Зубчатые колеса с числом зубъев г < во избежание подреза зубьев нужно нарезать с положительным смещением, при этом смещение подбирают так, чтобы линия головок исходного контура рейки пересекала линию зацепления в точке А . Общая формула для смещения при нарезании прямозубых и косозубых колес имеет вид  [c.194]

В цилиндрической передаче с зацеплением Новикова линия зацепления расиоложена параллельно q ям зубчатых колес и поэтому площадка контакта зубьев здесь перемещается не по профилю зубьев, как в эвольвентном соединении, а вдоль зубьев. Следовательно, коэффициент перекрытия равен нулю е = О и, соответственно, зацепление с данным профилем может быть только косозубым с углом наклона зубьев р = 10...30°. При взаимном перекатывании зубьев  [c.471]

Особенности зацепления. С целью повышения несущей способности зубчатых передач М. Л. Новиковым в 1955 г. было предложено повое выпукло-вогнутое круго-винтовое зацепление (рис. 3.50). В этом зацеплении зубья колес могут иметь выпуклую, вогнутую либо выпукло-вогнутую форму. Теоретически эти зубья контактируют в одной точке на линии зацепления (рис. 3.51, а). В торцовом сечении профили зубьев не сопряженные. Поэтому для обеспечения постоянного передаточного отношения передача может быть только косозубой. Профили зубьев очерчены дугами окружностей, радиусы которых отличаются друг от друга на 7—15%. Благодаря этому при контакте выпуклого с вогнутым профилем зубьев нагрузка распределяется по большой поверхности, напряжения на площадке контакта будут меньше, чем в эвольвентом зацеплении и передаваемую нагрузку можно увеличить.  [c.272]

Для пр Я Варительного опред ел вн1ия тангенциального усилия царапания в конструкции установки предусмотрено записывающее устройство, состоящее яз маятникового рычага 4 с уравновешивающим грузом 2 стрелки с карандашом 5 барабана 1 с диаграммной бумагой реечно-зубчатой передачи, которая включает косозубую рейку 19 и зубчатое колесо 20. Рейка закреплена на нижней части гайки и входит в зацепление с зубчатым колесам, связанным фрикционно с бара-бано1М. Таким образом, при продольном перемещении гайки с кассетой барабан получает вращение через зубчатое колесо. П,ри отсутствии тангенциального усилия на инденторе маятниковый рычаг неподвижен, и поэтому стрелка с карандашом нанесет прямую лащию по окружности барабана. При приложении тангенциального усилия к индентору маятниковый рычаг будет отклоняться от вертикального положения, увлекая за собой стрелку, отклонение которой и покажет вели чи.ну тангенциального усилия царапания в определенном  [c.121]

Косозубые колеса внешнего зацепления с открытым зубчатым венцом Станки мод. Ст-1481 (ЗИЛ). Мод. фирмы Кросо 75 и 73  [c.579]

Зубошевннгованне дисковым шевером является наиболее распространенным и экономичным методом чистовой обработки зубьев незакаленных (с твердостью до ИКС 33) прямозубых и косозубых цилиндрических колес с внешним и внутренним зацеплением после зубофрезерования или зубодолбления. Шевингование применяют для повышения точности зубчатого зацепления, уменьшения параметра шероховатости поверхности на профилях зубьев, снижения уровня шума и т. д. Шевингованием можно повысить точность на одну-две степени. Точность шевингованных зубчатых колес достигает 6 —8-й степени, параметр шероховатости поверхности Ка = 0,8 -ь 2,0 мкм. Точность зубчатых колес в процессе шевингования зависит главным образом от их точности после зубофрезерования или зубодолбления и коэффициента перекрытия шевера с обрабатываемым колесом, который должен быть не менее 1,6. При шевинговании можно проводить продольную и профильную модификацию зуба. При образовании продольной бочкообразности исключается опасность концентрации нагрузки на концах зубьев. Модификация эвольвентного профиля зубьев позволяет уменьшить уровень шума и повысить срок службы зубчатой передачи. Модификацию формы зуба проводят также для компенсации деформации в процессе термической обработки.  [c.349]

Ниже рассматриваются наиболее распространенные зубчатые передачи цилиндрические с прямозубыми и косозубыми колесами и внешним нли внутренним зацеплением, которые применяются для передачи вращения между параллельными валами конические прямозубые передачи с углом пересечения валов 90° червячные передачи с ар> имедовым червяком, применяющиеся-при скрещивающихся валах.  [c.529]

А. В Милане, в 1335 г. Б. Нюрнбергский механик П. Хенлейи, в 1510 г. В. X. Гюйгенс воспользовался эффектом изохронности малых колебаний маятника (независимость периода его колебаний от амплитуды), открытым Г. Галилеем. Г. Выдающимся механиком И. П. Кулибиным — Б России и часовым мастером П. Лерца — во Франции (независимо) в целях устранения погрешностей работы часов, связанных с изменениями температуры окружающей среды, было предложено использовать для изготовления маятников биметалл (материал, состоящий из двух металлов). 5. а) Координатно-расточной станок, для финишной обработки отверстий, расположение которых должно быть точно выдержано, а также для прецизионных фрезерных и других точных работ, б) Зубодолбежный полуавтомат, для обработки цилиндрических прямозубых и косозубых колес с наружным и внутренним зацеплением, посредством круглых (зубчатых) долбяков, методом обкатки, в) Многооперацион-ный станок с ЧПУ, для обработки заготовок корпусных деталей на одном рабочем месте с автоматической сменой инструмента, г) Круглошлифовальный станок, для наружного шлифования в центрах заготовок деталей типа тел вращения, д) Вертикально-сверлильный станок, для сверления, зенкерования, зенкования, развертывания отверстий, подрезания торцов изделий и нарезания внутренних резьб метчиками, е) Токарно-револьверный станок, для обработки заготовок с использованием револьверной головки, ж) Радиально-сверлильный станок, для сверления, рассверливания, зенкерования, развертывания, растачивания и нарезания резьб метчиками в крупных деталях, з) Поперечно-строгальный станок, для обработки плоских и фасонных поверхностей сравнительно небольших заготовок, и) Горизонтально-расточной станок, для растачивания отверстий в крупных деталях, а также для фрезерных и других работ, к) Плоскошлифовальный станок, для шлифования периферий круга плоскостей различных заготовок при возвратнопоступательном движении стола и прерывистой поперечной подаче шлифовальной бабки, л) Зубофрезерный полуавтомат, для фрезерования зубьев цилиндрических прямозубых и косозубых шестерен, для обработки червячных колес методом обкатки червячной фрезой,  [c.146]


Смотреть страницы где упоминается термин Зубчатые зацепления с косозубыми колесами : [c.55]    [c.20]    [c.270]    [c.170]    [c.304]    [c.186]    [c.346]    [c.45]   
Смотреть главы в:

Курс теории механизмов и машин  -> Зубчатые зацепления с косозубыми колесами



ПОИСК



Зацепление зубчатое

Зацепление зубчатое круговинтовое с косозубыми колесами

Зацепление косозубое

Зацепления зубчатых колес Коррекция цилиндрических косозубых — Дополнительные элементы — Определение

Зубчатые зацепления—см. Зацепления

Зубчатые зацепления—см. Зацепления зубчатые

Зубчатые колеса конические косозубые (тангенциальные) 466, 471 Зубья — Размеры контрольные Определение 480 — Размеры и характеристики 467 — Расчет геометрический 474—481 —Усилия зацеплении

Зубчатые колеса цилиндрические косозубые с зацеплением Новикова

Зубчатые колеса цилиндрические косозубые— Зацепления — Дополнительные элементы — Определение

Зубчатые колеса цилиндрические косозубые— Зацепления — Дополнительные элементы — Определение 4 401 — Зубья — Незаострение — Проверка уточненная 4 — 394 — Коэффициент перекрытия — Уточненное определение 4 — 395 — Формулы и примеры расчета

Зубчатые колёса конические косозубые — Зацепления — Геометрический расчёт 672, 673 — Рабочие

Зубчатые колёса конические косозубые — Зацепления — Геометрический расчёт 672, 673 — Рабочие чертежи

Зубчатые колёса косозубые 640 — Зацепления Коррекция

Зубчатые косозубые

Колесо зубчатое косозубое

Колесо косозубое

Номограммы для определения коэффициента угла зацепления косозубых и шевронных зубчатых колес

Номограммы угла зацепления косозубых и шевронных зубчатых колес

Параметры редукторов с косозубыми зубчатыми колесами при f ф J0,4 (зацепление некорригированное или корригированное с коэффициентами сдвига —к) (по ГОСТ



© 2025 Mash-xxl.info Реклама на сайте