Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи динамики Равновесие. Статика

Задачи динамики. Равновесие. Статика. Рассматривая движение систем в связи с силами, приложенными к образующим их материальным точкам, динамика ставит целью решение следующих двух основных задач 1) по заданным силам найти движение системы  [c.89]

Сила инерции. Если в задаче динамики или статики требуется определить движение или условия равновесия какого-либо материального объекта, то, составляя уравнения движения или равновесия этого материального объекта, мы включаем в них только те силы, которые на него реально действуют. В эти уравнения не должны входить силы, с которыми данное тело действует на окружающие материальные тела.  [c.402]


Следует помнить, что равновесие, о котором идет речь в формулировке принципа Даламбера, условное. Силы инерции не приложены к материальной точке, на которую действуют силы Р и Я. Поэтому это равновесие следует рассматривать как фиктивное. Этим и объясняется, почему при формулировке принципа Даламбера слово уравновешивается взято в кавычки. Само понятие о таком равновесии есть лишь способ для введения особой методики решения задач динамики, заключающейся в применении в динамических задачах уравнений равновесия статики. Собственно в этом и заключается практическое значение принципа Даламбера. Принцип Даламбера дает возможность формально сводить решение задач динамики к решению задач статики.  [c.421]

Это не означает, что мы можем на практике решать задачи динамики методами статики. Окончательные уравнения являются дифференциальными уравнениями, которые приходится потом решать. Мы просто выводим эти уравнения, пользуясь соображениями статики. Добавление силы инерции I к действующей силе F заменяет задачу о движении задачей о равновесии.  [c.113]

По характеру рассматриваемых задач механику принято разделять на с тати к у, кинематику и динамику. В статике излагается учение о силах и об условиях равновесия материальных тел под действием сил. В кинематике рассматриваются общие  [c.6]

Если все силы, действующие на твердое тело, образуют систему сил, находящуюся в равновесии, то мы будем говорить, что и само тело находится в равновесии. Из последнего определения следует, что под состоянием равновесия твердого тела (а в дальнейшем н механической системы) мы будем понимать те состояния, которые тело может иметь под действием уравновешенной системы сил, т. е. состояния покоя или инерциального движения (см. 14, п. 9) какое именно из этих состояний имеет место, с точки зрения задач, рассматриваемых в статике, несущественно. Рассмотрение инерциальных движений, которые может совершать твердое тело, относится к задачам динамики.  [c.186]

Вектор / называют силой инерции, а уравнение (6.1) является уравнением равновесия статики и выражает принцип Даламбера если в каждый данный момент к действующим на тело силам прибавить силу инерции, то полученная система сил будет находиться в равновесии, и для нее справедливы все уравнения статики. Принцип Даламбера позволяет при решении динамических задач составлять уравнения движения в форме уравнений равновесия и решать задачи динамики с помощью более простых законов статики. При этом нужно иметь в виду, что фактически на данное тело действует только сила Р, а сила инерции Д, приложена к другому (ускоряющему) телу, которое воздействует силой Р на ускоряемое тело.  [c.59]


Французский математик и философ Даламбер (1717—1783 гг.) предложил уравнение динамического равновесия, названное принципом (началом) Даламбера и позволяющее решать задачи динамики с помощью уравнений статики.  [c.163]

При выводе уравнений движения (4.123) — (4.126) использовался принцип Даламбера, позволяющий свести задачи динамики к задачам статики введением сил инерции, поэтому уравнение (4.127) можно рассматривать как уравнение равновесия стержня, что позволяет воспользоваться принципом возможных перемеще-  [c.108]

Принцип Даламбера представляет собой удобный методический прием решения динамических задач, так как позволяет уравнения движения записать в форме уравнений равновесия. Этим, конечно, задача динамики не сводится к задаче статики, так как при этом лишь упрощается составление уравнений движения, задача же их интегрирования, вообще говоря, сохраняется.  [c.361]

Принципом Даламбера задача динамики лишь формально сводится к задаче о равновесии сил, т. е. к задаче статики. Мы подчеркиваем словом формально , что уравнения в форме (20.5) остаются уравнениями движения и для своего полного решения требуют, вообще говоря, интегрирования.  [c.364]

Расчеты при инерционной нагрузке. Расчеты с учетом инерционных нагрузок ведутся известным из теоретической механики методом кинетостатики, основанном на принципе Даламбера. Согласно этому принципу все активные и реактивные силы, приложенные к телу, вместе с силами инерции образуют систему взаимно уравновешенных сил, удовлетворяющую всем условиям равновесия. Таким образом, задачи динамики и сопромата решаются методами статики.  [c.285]

Задачи на определение напряжений с учетом влияния сил инерции решаются па основе известного нз курса теоретической механики метода кинетостатики, позволяющего сводить задачи динамики к задачам статики. Напомним, что, применяя метод кинетостатики, мы придаем уравнениям движения тела вид уравнений равновесия, присоединяя к действующим на тело силам и динамическим реакциям связей силы инерции точек тела. Под силой инерции точки понимают силу, равную по величине произведению массы точки на ее ускорение и направленную в сторону, обратную ускорению.  [c.321]

Силовой расчет механизмов можно выполнить различными способами. Однако в последнее время пользуются преимущественно принципом Даламбера, который формулируется так если к каждой точке материальной системы, кроме равнодействующей заданных сил и реакций связей, приложить еще силу инерции этой точки, то уравнениям динамики можно придать форму уравнений статики. Основанный на принципе Даламбера силовой метод расчета, который состоит в перенесении методов статики в решение задач динамики механизмов и машин, называют кинетостатическим расчетом механизмов в отличие от статического расчета, при котором силы инерции звеньев не учитываются. Таким образом, если закон движения материальной системы известен, то, присоединяя к точкам этой системы, кроме задаваемых сил и реакций связей, также фиктивные силы инерции, можно рассматривать эту систему условно находящейся в равновесии и определять неизвестные силы методами статики, т. е. с помощью уравнений равновесия или принципа возможных перемещений.  [c.342]

Введение понятия о рычаге Жуковского дает возможности заменить решение задачи о равновесии сил, действующих на движущиеся звенья механизма или машины, решением задачи о равновесии сил, приложенных к рычагу Жуковского в статическом его состоянии. Другими словами, метод Жуковского дает возможность решать сложные задачи динамики с помощью уравнений равновесия статики. Этот метод используется в инженерных расчетах для определения уравновешивающей силы и сил давления звеньев кинематических пар и является более простым по сравнению с другими методами.  [c.135]


Таким образом, величина уравновешивающей силы механизма легко определяется из уравнения равновесия плана скоростей, построенного в виде рычага Жуковского. При этом из приложенных сил должны быть учтены силы инерции и пары сил инерции звеньев, так как использование уравнений равновесия статики для решения задач динамики возможно лишь при условии соблюдения известного из теоретической механики принципа Даламбера.  [c.136]

Таким образом задачи динамики, хотя и несколько неестественным образом, подведены под правила статики, что представляет для нас известное удобство. Частный случай этого принципа уже- известен студентам обратная эффективная сила", действующая на точку т, описывающую с постоянною угловою скоростью круг радиуса г, есть просто фиктивная центробежная сила /мю г, которая находится в равновесии с действительными силами, действующими на материальную точку.  [c.138]

Состояние равновесия механической системы изучается в разделе динамики, называемом статикой. В статике решаются две задачи 1) найти условия равновесия механической системы 2) решить вопрос о приведении системы сил, т. е. о замене данной системы сил другой, в частности, более простой, оказывающей то же воздействие на движение механической системы, что и исходная система сил.  [c.90]

Согласно принципу Даламбера, задачи динамики могут сводиться к задачам статики, если к действительно действующим силам присоединить условно вводимые силы инерции. Приняв это условие и составив уравнения равновесия, т. е. уравнения статики, можем получить дифференциальные уравнения движения системы материальных точек (18).  [c.32]

В задачу силового расчета механизмов и машин входит определение усилий, действующих на отдельные звенья и кинематические пары механизмов при заданных условиях движения. Основным методом силового расчета механизмов является кинетостатический метод. Этот метод, на основании принципа Даламбера, приводит задачи динамики машин к задачам статики. При определении условий равновесия отдельных звеньев машин, кроме действующих на них внешних сил, принимаются в расчет также внутренние силы инерции. Силовой расчет дает возможность правильно, по условиям прочности, выбрать конструктивную форму и размеры отдельных звеньев и деталей машин, определить давления и силы трения в кинематических парах, а также правильно оценить необходимую мощность для привода машины или механизма.  [c.37]

Решение этих уравнений не представляет, конечно, никаких затруднений. Для более наглядного представления получаемого при этом результата введем здесь понятие о критической скорости, которая будет играть такую же роль в задаче динамики, как критическая сжимающая сила в соответствующей задаче статики. Критической сжимающей силой мы называем ту наименьшую силу, при которой прямая форма сжатого стержня перестает быть устойчивой. Прямой стержень, лежащий на упругом основании и сжимаемый силами S, может при некоторых определенных значениях S иметь не только прямую, но также и весьма близкую к ней искривленную форму равновесия. Полагая равным нулю знаменатель одного из членов ряда (12), мы получаем условие для определения нужных нам значений S в таком виде  [c.367]

Принципы, история которых излагается ниже,— суть принципы кинетостатики, т. е. того раздела механики, в котором задачи динамики (кинетики) несвободной системы точек решаются методами статики. Возможность применить уравнения статики к системе точек, не находящихся в равновесии, основывается на двух принципах, которые часто объединяют под общим названием начала Даламбера. В действительности сначала был разработан принцип, существенно связанный с понятием силы инерции ( Петербургский принцип ), и лишь после этого появился собственно принцип Даламбера, в котором понятие силы инерции совсем не используется. Как будет показано, они переводятся один в другой, чем и объясняется их смещение.  [c.138]

Принцип, с помощью которого Даламбер решал все задачи динамики, состоял в уравновешивании так называемых потерянных сил или в сведении решения задач динамики формально к уравнениям статики. В гидростатике Даламбер использовал уравнения равновесия идеальной жидкости в частных производных, введенных Клеро. Так были получены первые дифференциальные уравнения движения идеальной жидкости, о которых Лагранж  [c.186]

Таким образом, всякую материальную точку и всякую систему можно при применении метода кинетостатики считать в произвольный момент их движения находящимися в равновесии (условном, конечно) и, следовательно, составлять для каждого определенного случая расположения сил соответствующее число независимых уравнений равновесия, так же как составляли их в статике. Метод кинетостатики вследствие своей простоты и наглядности широко применяется в технической практике для решения задач динамики. Особенно удобен этот метод для определения так называемых динамических реакций связей, т. е. реакций, возникающих в связях при движении системы. Этим методом можно пользоваться и для определения ускорений тел, входящих в состав системы.  [c.271]

По характеру рассматриваемых задач механику принято разделять на статику, кинематику и динамику. В статике излагается учение о силах и об условиях равновесия материальных тел под действием сил. В кинематике рассматриваются общие геометрические свойства движения тел. Наконец, в динамике изучаются законы движения материальных тел под действием сил.  [c.12]


Здесь рассмотрены расчеты движущихся деталей при заданных ускорениях и расчет на действие ударной нагрузки. В первом из указанных случаев расчет в принципе не отличается от расчета при статическом нагружении. Для определения внутренних силовых факторов, возникающих в поперечных сечениях движущегося бруса, применяют метод кинетостатики, основанный на принципе Даламбера. К каждой точке тела прикладывают силу инерции, уравновешивающуюся активными и реактивными силами, приложенными к данной точке. Таким образом, точку можно рассматривать как находящуюся в равновесии, т. е. задача динамики сводится к задаче статики. Напоминаем, что сила инерции равна произведению массы точки на ее ускорение и направлена в сторону, противоположную ускорению.  [c.238]

Наиболее важным выводом из экстремальных принципов статики идеально пластического тела являются теоремы о границах несущей способности тел, на основе которых развивается статическая теория предельного сопротивления (равновесия). Естественно предположить, что статическая теория должна обобщаться соответствующей динамической теорией. Однако постановка задач и возможные методы их решения в динамике разнообразнее и шире, причем постановка задач статики является частной по отношению к задачам динамики.  [c.69]

На решение задач с помощью принципов механики (принципы Лагранжа, Даламбера и Даламбера — Лагранжа) отводится три занятия. Решая задачи с помощью принципа Даламбера, стараемся подчеркнуть, что этот принцип не сводит задачу динамики к задаче статики, а только позволяет записать уравнения движения в форме уравнений равновесия.  [c.11]

После рассмотрения дифференциальных уравнений движения и двух основных задач динамики несвободный материальной системы изучается метод Лагранжа. Вводится понятие об обобщенных координатах, обобщенных скоростях и обобщенных силах. Выводятся общее уравнение статики в обобщенных координатах и уравнения равновесия несвободной материальной системы. Уравнения движения в обобщенных координатах вытекают из уравнений равновесия и принципа Даламбера-Для этого достаточно к обобщенной активной силе добавить обобщенную силу инерции. После элементарных преобразований получается  [c.70]

Прежде всего рассматривается задача о движении материальной точки, находящейся под действием совокупности сил. Формулируются законы Ньютона, выводятся дифференциальные уравнения движения точки. Особо отмечается случай, когда точка находится в равновесии (статика точки). Далее формулируются основные задачи динамики точки и рассматриваются примеры (например, задача о колебаниях точки). Здесь же доказывается теорема об изменении кинетической энергии точки и подробно изучается понятие работы силы и теория потенциального силового поля.  [c.74]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]

Задач динамики. Равновесие. Статика. Рассматривая дви-н енпе систем в сиязи с силами, нрило кеннымн к образующим их мате])пальпым точкам, динамика ставит целью решение следующих->)вух основных задач 1) по заданным силам найти двии ение системы 2) по известному движению системы найти неизвестные силы, приложенные к точкам системы.  [c.74]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Решете задач динамики жтодами статики носит название кинетостатики. В основу метода положено начало Даламбера, согласно которому движущееся звено можно рассматривать как находящееся в равновесии, если к действующим на него заданным силам условно приложить фиктивные силы инерции. В результате задача динамики формально сводится к задаче статики.  [c.168]

Вектор S, равный по величине произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению, называется силой инерции материальной точки и считается приложенным к этой точке. Представление о силах инерции будет расширено в гл. XXX в связи с рассмотрением динамики относительного движения. Сейчас удовольствуемся принятым формальным определением силы инерции и заметим, что в результате такого подхода уравнение динамики (2) свелось к уравнению равновесия (19) материальной точки под действием приложенной силы и силы инерции. Изложенный прием сведения задачи динамики к задаче статики лежит в основе метода кинетостатики, который будет в более общем виде изложен в гл. XXVIII. По своей сути метод этот относится к первой задаче динамики. Как выяснится из следующих примеров, данный метод особенно полезен при рассмотрении движений в естественной форме.  [c.22]


Направление силы Р< ) показано на рис. 6.27. Сосредоточенные и распределенные силы, вызванные потоком (на криволинейных участках трубопровода возникают распределенные силы, равные по модулю тгШо из, где из — кривизна осевой линии стержня), нагружают стержень. Вызванное потоком жидкости начальное напряженное состояние стержня существенно влияет на его частотные характеристики, что при исследовании задач динамики следует обязательно учитывать. Полученные уравнения равновесия (6.112) и (6.114) справедливы как для случая, когда форма осевой линии стержня при нагружении внешними силами практически остается без изменения, так и для случая, когда форма равновесия при приложении внещних сил существенно отличается от исходной (например, для стержней с малой жесткостью). В первом случае вектор бь входящий в уравнение (6.114), есть известная функция координаты S с известными проекциями в декартовых осях во втором случае вектор С] неизвестен и для определения Q и М уравнений (6.112), (6.114) недостаточно для решения задач статики необходимо рассматривать деформации стержня.  [c.264]

Для ураиновешенной системы сил в 1ависимости от вида системы сил и количества тел в системе можно составить вполне определенное количество уравнений равновесия. Из этих уравнений, как и задачах статики, определяются неизвестные силы реакции связей. Этот метод решения задач динамики называют методом КИНЕТОСТАТИКИ.  [c.154]

Задачи силового анализа механизмов. Силовой анализ механизмов основывается на решении первой задачи динамики — по заданному движению определить действующие силы. Поэтому законы движения начальных звеньев при силовом анализе считаются заданными. Внешние силы, приложенные к звеньям механизма, обычно тоже считаются заданными и, следовательно, подлежат определению только реакции в кинематических парах. Но иногда внешние силы, приложенные к начальным звеньям, считают неизвестными. Тогда в силовой анализ входит определение таких значений этих сил, при которых выполняются принятые законы движения начальных звеньев. При решении обеих задач используется кинетоста-тический принцип, согласно которому звено механизма может рассматриваться как находящееся в равновесии, если ко всем внешним силам, действующим на него, добавить силы инерции. Уравнения равновесия в этом случае называют уравнениями кинетостатики, чтобы отличать их от обычных уравнений статики — уравнений равновесия без учета сил инерции.  [c.57]

К середине XIX в. в России выросла плеяда талантливых ученых, заложивших основы современной теории механизмов и машин. Основателем русской школы этой науки был великий математик акад. П. Л. Чебышев (1821—1894 гг.), которому принадлежит ряд оригинальных исследований, посвяш,енных синтезу механизмов, теории регуляторов и зубчатых зацеплений, структуре плоских механизмов. Он создал схемы свыше 40 различных механизмов и большое количество их модификаций. Акад. И. А. Вышнеградский явился основателем теории автоматического регулирования его работы в этой области нашли достойного продолжателя в лице выдаюш,егося русского ученого проф. Н. Е. Жуковского, а также словацкого инженера А. Сто-долы и английского физика Д. Максвелла. Н. Е. Жуковскому — отцу русской авиации — принадлежит также ряд работ, посвященных решению задачи динамики машин (теорема о жестком рычаге), исследованию распределения давления между витками резьбы винта и гайки, трения смазочного слоя между шипом и подшипником, выполненных им в соавторстве с акад. С. А. Чаплыгиным и др. Глубокие исследования в области теории смазочного слоя, а также по ременным передачам выполнены почетным академиком Н. П. Петровым. В 1886 г. проф. П. К. Худяков заложил научные основы курса деталей машин. Ученик Н. А. Вышнеградского проф. В. Л. Кирпичев известен как автор графических методов исследований статики и кинематики механизмов. Он первым начал читать (в Петербургском технологическом институте) курс деталей машин как самостоятельную дисциплину и издал в 1898 г. первый учебник под тем же названием, В его популярной до сих пор книге Беседы о механике решены задачи равновесия сил, действующих в стержневых механизмах, динамики машин и др. Выдающийся советский ученый проф. Н. И. Мерцалов дал новые оригинальные решения задач кинематики и динамики механизмов. В 1914 г. он написал труд Динамика механизмов , который явился первым систематическим курсом в этой области. Н. И. Мерцалов первым начал исследовать пространственные механизмы. Акад. В. П. Горячкин провел фундаментальные исследования в области теории сельскохозяйственных машин.  [c.7]

Принцип возможных перемещений. Решение задач с применением принципа возможных перемещений рассмотрено в настояшем томе, хотя задачи относятся к статике, а не к динамике. Вызвано это тем, что изучение равновесия сложных систем, состоящих из большого числа тел, с наложенными гОлономными связями методами, изложенными в статике твердого тела, малоэффективно.  [c.577]

В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

В середине XVIII столетия французский математик Даламбер предложил новый метод решения задач динамики, с помощью которого всякую задачу о движении материальной точки под действием заданных сил можно свести к задаче о равновесии этой точки, т. е. решение задачи динамики можно свести к решению соответствующей задачи статики.  [c.124]

В появившемся в 1743 г. сочинении Даламбера Трактат по дина 11нке был предложен принцип, сводящий задачу о движении материальной точки к задаче о равновесии и, таким образом, динамику к статике. Принцип этот был призван разрешить или по крайней мере выразить в виде уравнений все задачи механики, причем единым методом.  [c.295]


Смотреть страницы где упоминается термин Задачи динамики Равновесие. Статика : [c.264]    [c.436]    [c.69]    [c.5]   
Смотреть главы в:

Теоретическая механика  -> Задачи динамики Равновесие. Статика



ПОИСК



Динамика ее задачи

Задачи динамики

Задачи статики

Статика

Статика. Динамика



© 2025 Mash-xxl.info Реклама на сайте