Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бернулли движения в механике

Этот второй путь формирования механики был наглядно продемонстрирован Лагранжем в его знаменитой Аналитической механике через сто лет после выхода Начал . И этот путь пролегал через творчество Галилея, Декарта, Гюйгенса, Лейбница, И. и Д. Бернулли, Даламбера. Вывод о сохранении величины, называемой ныне кинетической энергией, для движения точки в центральном поле сил мы видим в Началах (Книга первая, предложение ХЬ). Однако ни Ньютон, ни еще ранее Гюйгенс в его теории удара не придавали этому результату особого значения, статуса закона. И только Лейбниц, ссылаясь на авторитет Галилея, предложил считать мерой движения не декартово количество движения, а величину названную им живой силой . Он же первым и сформулировал закон сохранения живых сил , и дал словесную формулировку теоремы об изменении кинетической энергии. Работы И. и Д. Бернулли укрепили в механике понятие живой силы и сделали естественным переход от второго закона к теореме энергии в ее математическом выражении.  [c.106]


Довольно любопытна также и другая работа Бернулли. Сравнивая движение частицы в поле заданной силы с распространением света в оптически неоднородной среде, он попытался создать на этой основе механическую теорию коэффициента преломления. Этим Бернулли предвосхитил великую теорию Гамильтона, в которой было показано, что принцип наименьшего действия в механике и принцип минимального времени распространения, носящий имя Ферма, аналогичны в своих выводах, что позволяет  [c.386]

Развитие аналитического направления в механике получило наиболее яркое выражение в работах знаменитого французского математика и механика Лагранжа (1736—1813). В его сочинении Аналитическая механика (1788) вся механика изложена строго аналитически на основе единого общего принципа — принципа возможных перемещений (указанного Иваном Бернулли еще в 1717 г.). Лагранжу принадлежат дальнейшее развитие п. математическая разработка методов применения этого принципа к решению задач механики. При этом Лагранж не ограничился применением этого принципа только в статике объединив принцип возможных перемещений с принципом Даламбера, он получил в общем виде дифференциальные уравнения движения  [c.20]

Все участники дискуссии о мере движения ссылались на авторитет Декарта, Галилея, Гюйгенса, Лейбница, обсуждали результаты экспериментов (в том числе мысленных) в задачах об ударе и падении тел. И после смерти Лейбница его сторонники (Германн, И. и Д. Бернулли, Бильфингер, Вольф) продолжали спор с картезианцами. Но кроме приверженцев одной меры движения появились ученые, стремившиеся занять какую-то промежуточную позицию . Именно этот дуализм, состоящий в том, что выбор меры движения полностью определяется постановкой задачи, укоренился в механике после издания Динамики Даламбера и положил конец дискуссии.  [c.114]

Трудно переоценить роль математического анализа, теории дифференциальных уравнений, вариационного исчисления в современной механике. Ио, кроме этого, после Лейбница в механике осталось понятие действия. Его живая сила в XIX в. была переименована в кинетическую энергию, получив при этом и ясный физический смысл, и официальный статус меры движения. Его теоретические идеи обогатили механику Галилея, Декарта, Гюйгенса, его решения задач, как правило, подтверждали результаты знаменитых современников (Гюйгенса, Ньютона, Я. и И. Бернулли, Лопиталя). Идейное наследие и методы Лейбница получили развитие в трудах его последователей — Бернулли, Вариньона, Клеро, Мопертюи, Эйлера, Даламбера и Лагранжа.  [c.132]


Значительный вклад в постановку новых и модернизацию уже известных задач, в адаптацию к ним дифференциального и интегрального исчисления внесли известные швейцарские математики и механики братья Якоб и Иоганн Бернулли. Их решения уже упоминавшихся задач о цепной линии, о брахистохроне, о центре качаний физического маятника, об ударе тел, о движении в сопротивляющейся среде и проблем баллистики, о равновесии тел показали универсальность и эффективность нового математического аппарата, подтвердили и обобщили результаты их предшественников. В первую очередь — Лейбница, чьи идеи и методы получили в их творчестве наибольшее развитие.  [c.136]

Самым убедительным доказательством истинности принципа живых сил оказалось построение Д. Бернулли на его основе теории о силах и движениях жидкостей. Даже названием своей теории и посвященной ей основополагающей работы — Гидродинамика , — изданной в Страсбурге в 1738 г., Даниил подчеркивал преемственность динамических идей Лейбница. Действительно, мне кажется, что во всем учении Лейбница о живых силах нет ничего такого, с чем не согласились бы все, хотя каждый и выражается по-своему,... [5, с. 29]. Но, апеллируя к Лейбницу, Д. Бернулли не забывает отметить, что свою теорию строит на прочном фундаменте общепринятых понятий и принципов ... я принимаю в механике только то, что принято всеми и, в том числе, Галилеем, когда он установил, что приращения скоростей пропорциональны давлениям и элементам времени . Анализ этой книги, написанной Д. Бернулли в петербургский период его жизни , выходит за рамки данной работы, поэтому остановимся только на некоторых ее фрагментах.  [c.161]

В этом периоде братья Якоб и Иоганн Бернулли, исследуя аналитически движение тяжелой точки по различным кривым, положили начало вариационному исчислению. Кроме того, Иоганну Бернулли принадлежит точная формулировка одного из основных принципов механики — принципа виртуальных перемещений (1717 г.).  [c.13]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

Даниил Бернулли (1700—1782 гг.)— выдающийся математик и физик, один из членов известного семейства Бернулли, в числе которых видные математики и физики. Д. Бернулли — по происхождению швейцарец, член Петербургской академии наук, жил в Петербурге с 1725 по 1733 г., где написал свой знаменитый труд Гидродинамика занимался многими вопросами механики жидкостей и газов. В частности получил излагаемое уравнение для случая установившегося движения,  [c.93]

Механика располагает двумя независимыми законами сохранения энергии (в гидравлике — уравнение Бернулли) и сохранения импульса внешних сил и количества движения.  [c.106]

До сих пор этот принцип рассматривался только в качестве простой теоремы механики однако после того как Иван Бернулли принял предложенное Лейбницем различие между мертвыми силами, или силами давления, не вызывающими реального движения, и живыми силами, при которых имеет место движение, а также его предложение измерять последнего рода силы произведением масс на квадраты скоростей, рассматриваемый принцип стал следствием теории живых сил и общего закона природы, согласно которому сумма живых сил нескольких тел остается неизменной, в то время как эти тела действуют друга на друга с помощью одних только сил давления, и равной той живой силе, которая получается в результате действия активных сил, приводящих тела в движение. Поэтому он дал указанному принципу название принципа сохранения живых сил и успешно применил его при разрешении некоторых задач, которые до тех пор еще не были решены и которые представлялось трудным довести до конца с помощью прямых методов.  [c.315]


К первому классу относятся принцип возможных перемещений Бернулли, принцип сил инерции Д Аламбера, принцип наименьшего принуждения Гаусса и принцип прямейшего пути Герца. Все эти вариационные принципы можно охарактеризовать как дифференциальные принципы, поскольку они вводят в качестве характерного признака действительного движения свойство движения, которое имеет значение для одного-единственного момента или элемента времени. Для систем механики все эти принципы эквивалентны и законам- движения Ньютона, и между собою. Но все они страдают тем недостатком, что имеют смысл только для механических процессов и что их формулировка делает необходимым пользоваться специальными координатами точек рассматриваемой материальной системы. Их формулировка, в зависимости от выбора координат точки, совершенно различна, и даже, чаще всего, относительно сложна и мало наглядна.  [c.582]

В решении И. Бернулли речь идет одновременно об оптике и механике, о движении луча и тяжелой частицы.  [c.782]

В 40-е годы Эйлеру пришлось не раз сталкиваться с вопросами гидро- и аэромеханики. Такие вопросы вставали, в частности, в области баллистики. Впервые Эйлер занялся баллистикой в 1727—1728 гг. в связи с опытами Д. Бернулли, изучавшего движение сферического снаряда, выпущенного в вертикальном направлении. Затем Эйлер рассмотрел в своей Механике вопрос о движении тела в среде, сопротивление которого пропорционально топ или иной степени скорости. В свою бытность  [c.186]

Вот выдержки из подлинного текста И. Бернулли Тончайшим, славящимся во всем мире математикам. Как мы достоверно знаем, едва ли существует что-либо иное, что могло бы в большей степени побудить благородные умы к совершению дел, ведущих к умножению знаний, чем предложение трудных, но в то же время полезных вопросов их разрешением, с помощью того или иного метода, они достигнут славы для своего имени и воздвигнут себе вечный памятник у потомков . Механико-геометрическая задача о линии наиболее скорого спуска формулируется в следующем виде Определить кривую линию, соединяющую две данные точки, расположенные на различных расстояниях от горизонта, не лежащих на одной и той же вертикальной линии, и обладающую тем свойством, что тело, движущееся по ней под влиянием собственной тяжести и начинающее свое движение из верхней точки, достигает нижней точки в кратчайшее время . См. Б е р-н у л л и И. Избранные сочинения по механике. М., 1937, с. 21—23. До опубликования этой задачи (в 1969 г.) И. Бернулли посылал ее Лейбницу, который быстро ее решил и посоветовал Бернулли обнародовать эту столь прекрасную и до сих пор неслыханную задачу .  [c.205]

Иван Бернулли (1667—1748) впервые сформулировал в общем виде один из основных принципов механики — принцип возможных перемещений, выражающий необходимое и достаточное условие равновесия механической системы, идея которого в применении к простейшим машинам была известна уже Галилею. Кроме того, И. Бернулли исследовал явление удара твердых тел. Б этих работах И. Бернулли, так же как и в работах Гюйгенса и других ученых по теории удара, получили развитие весьма важные для механики идеи о сохранении количества движения и живой силы (кинетической энергии).  [c.20]

Наиболее примитивный подход к исследованию движения системы, состоящей из п материальных точек, будет, очевидно, сводиться к рассмотрению движений каждой отдельной точки системы. При таком подходе должны быть определены все силы, действующие на каждую точку системы, в том числе и все силы взаимодействия между точками. Определяя теперь ускорения каждой точки в соответствии с законом Ньютона, получим для каждой точки три скалярных дифференциальных уравнения движения второго порядка или Зп дифференциальных уравнений движения для всей системы. Дальнейшее исследование сведется в первую очередь к исключению лишних неизвестных и затем к интегрированию уравнений. Зачастую оказывается, что движение определяется меньшим числом параметров, чем имеется уравнений. Поэтому возникает проблема — отыскать такие методы решения задач, которые бы приводили к уравнениям, не содержащим лишних параметров и сразу дающим представление о движении механической системы. Первая такая попытка дать общие методы принадлежит швейцарскому математику и механику Якову Бернулли (1654—1705), который, изучая движение маятника, пытался сводить задачу о движении к задаче о равновесии. Дальнейшее развитие принципа принадлежит Даламберу.  [c.299]

Если рассматривать механику XVII в. со стороны ее воздействия на науку в целом, то особенно большое значение приобретает развитие идеи сохранения энергии. Действительно, понятие энергии позволило перенести то, что было создано в механике, в более общую область. При этом принципы механики и расширили и сузили область своего применения. Оказалось (значительно позже рассматриваемого периода), что эти принципы не могут быть применены в физике без существенной модификации, что физика не сводима к механике. Но в модифицированной форме принципы механики оказались чрезвычайно важными для физики. Понятие энергии выросло в механике. Но оно стало фундаментальным понятием физики. Наряду с картезианской мерой движения в XVII в. появилась мера движения, которую Лейбниц назвал живой силой. Мы вернемся к этим вопросам ниже, здесь лишь отметим, что наряду с термином живая сила в XVII в. уже говорили и об энергии — это слово встречалось у Аристотеля. О сохранении живых сил говорил и Иоганн Бернулли. Он считал такое сохранение самым универсальным законом механики. Его также рассматривал Э. Эйлер, который связал живую силу с работой, измеряя прп-  [c.128]

Даламберу (наряду с Д. Бернулли и Эйлером) принадлежат основополагающие работы по гидромеханике, следствием которых были обобщающие работы Лагранжа по механике идеальной жидкости. В 1744 г. выходит сочинение Даламбера Трактат о равновесии движения жидкостей , в котором он применяет свой принцип к разнообразным вопросам движения жидкостей в трубах и сосудах. Даламбер исследовал также законы сопротивления при двин ении тел в жидкости. Процесс образования вихрей и разреженности за движущимся телом он объяснил вязкостью жидкости и ее трением о поверхность обтекаемого тела. В этом же сочинении Даламбер (почти одновременно с Эйлером) выдвинул положение об отсутствии сопротивления телу, движущемуся равномерно и прямолинейно в покоящейся идеальной жидкости (так называемый парад01кс Эйлера—Даламбера). Этот факт доказывается математически как для сжимаемой, так и для несжимаемой жидкости. В действительности же тело при своем движении в жидкости или газе всегда испытывает сопротивление. Это объясняется тем, что в реальной среде не выполняются предположения, на которых построено доказательство парадокса, т. е. всегда проявляются и вязкость, и вихри, в результате чего возникает поверхность разрыва скоростей. Все это вызывает сопротивление жидкости движению тела со стороны жидкости.  [c.198]


Два пункта имеют для дальнейшего особенно большое значение. Свободное движение точек должно было происходить вдоль отрезков а О и Это движение разложено на отрезки а О и Ос , a Q и Q . Что происходит а движениями Ос и Q Я. Бернулли разлагает приложенные к точкам силы соответственно разложению движений и считает, что составляющие сил вдоль стержня уравновеншваются реакциями в точке А. Второй и еще более важный пункт заключается в том, что силы инерции приводят рычаг к равновесию. Именно введение сил инерции позволило применять методы статики в 140 динамике. Роль этих сил в механике системы несвободных точек стала ясной после работ Я. Бернулли.  [c.140]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

Понятие виртуальной скорости является одним из основных в современной аналитической механике. Оно формировалось на протяжении всей истории механики, но впервые получило четкое определение в работах Бернулли. В уже упомянутом письме Вариньону он пишет Представьте себе несколько различных сил, которые действуют по различным направлениям, чтобы держать в равновесии точку, линию, поверхность или тело представьте также, что всей системе этих сил сообгцают малое движение или параллельно самой себе по какому-нибудь направлению, или же вокруг какой-нибудь неподвижной точки. Вам будет легко понять, что при этом движении каждая из сил продвинется или отступит по своему направлению, за исключением тех, которые направлены перпендикулярно к направлению малого движения. В этом  [c.142]

Отметим, что требование равномерности движения в определении живой силы не является обременительным, так как речь идет о бесконечно малом движении, фактически о мгновенной скорости. Бернулли утверждает, что это — обычный принцип статики и механики , поэтому он не нуждается в доказательствах. Однако следует иметь в виду, что этот старейший принцип ранее применялся для изучения только равновесия тел. По, возможно, именно этот принцип навел Декарта на мысль о законе сохранения количества движения, подтверждаю-гцем всеобгцность принципа. Для Бернулли же закон Декарта является следствием обгцего принципа.  [c.143]

Законы соударения тел (определения скоростей после удара) Бернулли получает основываясь на идее относительности движения в стиле Гюйгенса. Для этого он добавляет достаточно очевидную аксиому ( предложение II ) о том, что относительные движения тел в результате удара не зависят от движения плоскости, в которой происходит удар (движение). При этом вводится понятие количество направления , позднее вошедшее в механику как количество движения центра масс . Полученные результаты, по мнению автора, обобш,ают результаты Гюйгенса в теории удара.  [c.144]

Отметим основные вехи развития механики. Длительный период ее развития характеризовался накоплением экспериментальных фактов, их обобщением, формированием простых законов статики. Переломным моментом следует считать 1687 г., когда появился знаменитый трактат И. Ньютона Математические начала натуральной философии , где были сформулированы основные законы механики, предложена динамическая модель движения тел. Появлению этого трактата предшествовали труды великих ученых, математиков и механиков, таких как И. Кеплер, Т. Браге, Г. Галилей, Р. Декарт, X. Гюйгенс. Каждый из них внес свою крупицу знаний в общечеловеческую копилку. На фундаменте, заложенном И. Ньютоном, быстро начало строиться здание механики в XVHI в. оформляется ряд научных центров в Англии, Франции, Италии, Германии и России. Значительный вклад в развитие механики в XVHI в. внесли Д. Бернулли, И. Бернулли, Л. Эйлер, П. Лаплас, Ж. Д Аламбер. Девятнадцатый век охарактеризовался созданием Ж. Лагранжем аналитической механики. В это время происходит формирование таких разделов механики, как теория упругости, аэро- и гидромеханика. В аналитической механике осуществляется переход к гамильтоновой механике, углубляются и развиваются методы небесной механики. Ярчайший след в механике оставили труды В. Гамильтона, Г. Кирхгофа, С.В. Ковалевской, А.М. Ляпунова, М.В. Остроградского, А. Пуанкаре, Л. Пуансо, С. Пуассона, В. Томсона (Кельвина), П.Л. Чебышева, К. Якоби. Двадцатый век начался с создания А. Пуанкаре и А. Эйнштейном теории относительности. Однако очень скоро выяснилось, что ньютонова модель по-прежнему прекрасно описывает подавляющее большинство наблюдаемых движений, а разработанные математические методы с успехом могут быть применены в новых научных направлениях. Вместе с открытием теории относительности XX в. привел к революционному взрыву в развитии техники (авиастроение, воздухоплавание, кораблестроение, ракетостроение, робототехника и т.д.). Все эти новые направления потребовали создания новых механических теорий, описывающих  [c.15]

Следующий этап в развитии механик жидкости относится к XVni в. и связан с именами членов Петербургской академии наук Даниила Бернулли (1700—1782 гг.) и Леонарда Эйлера (1707—1783 гг.), разработавших общие уравнения движения идеальной жидкости и тем самым положивших начало теоретической гидроаэродинамике. Однако применение этих уравнений (так же как и разработанных несколько позже уравнений движения вязкой жид-  [c.5]

Даниил Бернулли (1700—1782) — выдающийся математик и физик. Жил в Петерубурге о 1725 по 1733 г., член Парижской академии наук. Занимался многими вопросами механики жидкостей и газов. В частности, получил излагаемое уравнение для случая установившегося движения несжимаемой жидкости.  [c.86]

Определение основных размеров маслопроводов, систем водяного охлаждения, разного рода сопловых аппаратов и насадков, а также расчет водоструйных насосов, карбюраторов и т. д. производятся с использованием основных законов и методов гидравлики уравнения Бернулли, уравнения равномерного движения жидкости, зависимости для учета местных сопротивлений и формул, служащих для расчета истечения жидкостей из отверстий и насадков. Приведенный здесь далеко не полный перечень практических задач, с которыми приходится сталкиваться инже-нерам-механикам различных специальностей, свидетельствует а большой роли гидравлики в машиностроительной промышленности и ее тесной связи со многими дисциплинами механического цикла (насосы и гидравлические турбины, гидравлические прессы и аккумуляторы, гидропривод в станкостроении, приборы для измерения давлений, автомобили и тракторы, тормозное дело, гидравлическая смазка, расчет некоторых элементов самолетов и гидросамолетов, расчет некоторых элементов двигателей и т. д.).  [c.4]

В своих исследованиях Галилей пользуется принципами суперпозиции (наложения) движений, независимости действия сил, относительности, инерции, возможных перемещений (возможных скоростей) и др. Особенно важно отметить последний, поскольку он постулирует сохранение работы. В применении к рычагу этот принцип известен в античном мире как золотое правило механики (сколько выигрываешь в силе, столько проигрываешь в перемещении), им пользовались Архимед, Герои, Стевин и другие ученые того времени. Но Галилей первым сформулировал это правило как общий принцип статики Когда наступает равновесие и оба тела приходят в состояние покоя, то моменты, скорости и склонность их к движению, т. е. пространства, которые они прошли бы в одинаковые промежутки времени,, должны относиться друг к другу обратно их весам... Окончательное обобщение этого принципа будет сделано в 1717 г. И. Бернулли.  [c.63]


Ifi. Появившееся в 1743 г, сочинение Даламбера Traits de Dynamique положило конец всем подобного рода вызовам ученых в нем предложен прямой и общий метод, с помощью которого можно разрешить, или во всяком случае выразить в виде уравнений, все проблемы механики, какие только можно себе представить. Этот метод приводит все законы движения тел к законам их равновесия и таким образом сводит динамику к статике. Мы уже отметили выше, что принцип, примененный Яковом Бернулли при определении центра колебания, обладал тем преимуществом, что он поставил это определение в зависимость от условий равновесия рычага однако только Даламбер подошел к этому принципу с более общей точки зрения и придал ему всю ту простоту и плодотворность, на которые он был способен.  [c.312]

В начале своего труда Д. Бернулли пишет, что под гидродинашЕКой он понимает механику жидкостей в целом, состоящую из двух частей — гидростатики, т. е. учения о равновесии покоягцихся жидкостей, и гидравлики, в которой рассматривается движение жидкостей. Каждая часть нуждается в помощи другой, и автор их соединил, поскольку этого требует порядок вещей, под более общим названием гидродинамики.  [c.192]

Остановимся на работах Даламбера по механике. К середине XVIII в. его работы вместе с исследованиями Леонарда Эйлера и Даниила Бернулли совершенно преобразовали мехашшу. По содержанию она стала наукой, охватывающей все виды движения материальных го-  [c.194]

Закон площадей — прообраз и частный случай общего закона моментов количеств движения — был установлен впервые Кеплером для движения планет. Кеплер показал, что его второй закон справедлив как для теории Коперника, так и для теорий Птолемея и Тихо Браге. Возможно, что это обстоятельство побудило Ньютона к дальнейшему обобщению. В Началах он доказал и то, что закон площадей для планетных орбит является следствием закона тяготения (планет к Солнцу) в принятой Ньютоном форме, и то, что этот закон справедлив при движении тела под действием любой силы постоянного направления, проходящей через неподвижный центр. Но переход к более общей закономерности не был напрашивающимся, так как момент силы относительно этого центра тождественно равен нулю и в случае, который рассматривал Ньютон. Этот переход был облегчен развитием статики — оперирование моментами (сил) относительно ося или точки как алгебраическими величинами стало там обычным благодаря трудам Вариньона. Все же новое обобщение закона площадей было получено только в работах 40-х годов XVIII в. Все эти работы связаны с задачами о движении тел на движущихся поверхностях. Подобные задачи ставились и в земной, и в небесной механике. Иоганн и Даниил Бернулли начали изучение таких вопросов для случая, когда движущаяся поверхность — наклонная плоскость. Клеро немало содействовал успеху в этой тогда новой области механики своими результатами по теории относительного движения. Вслед за ним Эйлер в большой работе О движениях тел по подвижным поверхностям от-  [c.125]

В отличие от Эйлера, Д. Бернулли сразу искал для решения таких задач достаточно общий принцип и пашел его для того случая, когда переносное движение ( движение поверхности ) — вращательное. В его письмах к Эйлеру речь идет о таких задачах, как движение точки по движущейся горизонтально кривой, о движении шарика во вращающейся трубке, об 126 обобщении последней задачи — во вращающейся трубке находится любое-число шариков Эти задачи решают оба автора, и при этом со все большей общностью формулируется закон площадей, а так как известный приоритет при этом сохранялся за Д. Бернулли, Эйлер побуждает его изложить полученные результаты и представляет работу своего друга и соперника Берлинской Академии наук. Это — Новая задача механики — о вращении трубки с любым числом находящихся в ней масс воАруг некоторой оси. Бернулли упоминает о том, что той же задачей с успехом занимались Эйлер и Клеро, хотя ему неизвестны ни их методы, ни их результаты. Затем он указывает, что подобные задачи не следует рассматривать изолированно, только ради их решения задачи механики заслуживают внимания прежде всего дготому, что онь часто приводят к открытию новых теорем и позволяют нам узнать те обпще законы, которым следует природа во всех своих проявлениях.  [c.126]

Патрик Дарси, ирландец, достигший во французской армии чина фельдмаршала, а во французской науке — членства Парижской академии наук, был теоретиком и нрактиком-артиллеристом, изучал и небесную механику— теорию Луны. Существенное место в истории механики занимает его работа Динамическая задача , к рассмотрению которой мы переходим В ней доказывается теорема, дающая обобщение соответствующей теоремы Ньютона при движении системы материальных точек вокруг неподвижного центра сумма произведений вида тгОг, где Oi — площадь, описываемая радиусом-вектором точки с массой rrii, и все О берутся в одной и той же плоскости проекций, пропорциональна времени. Это и есть, собственно, обобщенный закон площадей в интегральной форме, а теорема Д. Бернулли и Эйлера дает тот же закон в дифференциальной форме. В отличие от Эйлера и Бернулли,  [c.126]

Первые примеры такого применения дал сам Лейбниц (около 1690 г.), стремясь получить своими средствами некоторые результаты Ньютона по небесной механике, изложенные в III книге Начал . Систематически занимался, так сказать, переводом механики на язык лейбницевых дифференциалов Вариньон (около 1700 г.), состоявший в переписке с Лейбницем, значителен вклад в это дело Я. и И. Бернулли. Но только Эйлер поставил со всей определенностью задачу преобразования всей механики путем перевода ее с язы-ка синтетической геометрии на язык быстро развивавшегося математического анализа в форме, приданной последнему Лейбницем. Для механики материальной точки это выполнено в труде Механика или наука о движении, изложенная аналитически  [c.145]

Стимулом развития гидромеханики в XVIII в. были также задачи, которые выдвигались артиллерией и кораблестроением. Одной из основных проблем была проблема движения твердого тела в сопротивляющейся среде. Именно с ней связаны основополагающие работы Д. Бернулли, Л. Эйлера, Ж. Даламбера, следствием которых были обобщающие работы Лагранжа по механике идеальной жидкости.  [c.158]

В 1697 г. И. Бернулли поставил еще одну задачу на минимум провести кратчайшую линию между двумя заданными точками на произвольной поверхности. Первые исследования этой задачи выполнены Лейбницем и Я. Бернулли, но наиболее важный результат найден самим И. Бернулли. Он показал, что в любой точке кратчайшей линии соприкасающаяся плоскость перпендикулярна к касательной плоскости к поверхности, что, как известно, является основньш свойством геодезических линий. Понимая всю важность задачи о геодезических линиях, И. Бернулли, хотя и не опубликовал сразу найденный результат (он сообщил его в конце 1728 г. Упсальскому профессору Клингенштерну, а напечатаны его работы о геодезических линиях были лишь в 1742 г.), но предложил заняться этой задачей своему ученику Л. Эйлеру. Эйлер, которому тогда был 21 год, нашел (в 1728 г.) общее решение поставленной задачи. Четыре года спустя Эйлер опубликовал мемуар, в котором изопериметрическая задача была сформулирована в общем виде Затем во втором томе своей Механики , вышедшем в 1736 г., Эйлер снова занялся исследованием геодезических линий и решил изопериметрическую задачу о брахистохроне заданной длины. В 1741 г. Д. Бернулли поставил перед Эйлером проблему определить движение тела (материальной точки) под действием центральных сил методом изопериметров. Эйлер опубликовал найденное им решение в 1744 г. в приложении Об определении движения брошенных тел в несопротивляющейся среде методом максимумов и минимумов к знаменитой книге Метод нахождения кривых линий, обладающих свойствами максимума или минимума, или решение изопериметрической задачи, взятой в самом широком смысле . Именно Эйлеру принадлежит исторически первая отчетливая идея математического содержания, которое вкладывается наукой в принцип наименьшего действия. Именно Эйлер в 1744 г. в указанном приложении показал, что для траекторий, описываемых  [c.197]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]


Вновь вспомним уже отмечавшуюся в гл. 1 работу Д. Бернулли 0 действии жидкостей на твердые тела и движении твердых тел в жидкостях , где автор пишет, что сила реакции струи жидкости (реактивная сила) должна иметь удвоенный коэффициент. Другие варианты, по его мнению, не отвечают опыту, т.к. достаточно походили бы на истинные, если бы более соответствовали мере эксперимента . К сожалению, его практические выводы, основанные на тщательном измерении скорости реактивной струи, не были подкреплены теоретическим анализом. Тем не менее Д. Бернулли можно считать предтечей гиперреактивной механики.  [c.148]

Наибольшее развитие, в связи с задачами, вставшими перед создателями паровых турбин, получила газовая гидравлика, предметом изз чения которой явились одномерные течения сжимаемого газа с большими до- и сверхзвуковыми скоростями по трубам и соплам, вопросы истечения газа из резервуаров и тому подобные явления. Это направление механики сжимаемого газа нашло опору в общих теоремах количеств движения, теореме Бернулли, баланса энергии, а также в основных закономерностях термодинамики газа. Наиболее популяр-цым и важным результатом этого направления следует признать классическую формулу Сен-Венана и Ванцеля (1839), связывающую скорость адиабатического истечения газа с давлением и плотностью газа в резервуаре и с противодавлением.  [c.29]

Уравнение Бернулли во вращающейся системе отсчета. а) В этой подглаве мы рассмотрим движения жидкости, которые возникают около вращающегося тела или во вращающемся пространстве, причем остановимся только на случае равномерного вращения, как наиболее важном. При изучении таких движений жидкости целесообразно рассматривать их с точки зрения наблюдателя, вращающегося вместе с телом или пространством. В самом деле, для такого наблюдателя вращающееся тело или пространство находятся в покое, и поэтому в ряде случаев течение жидкости будет казаться ему установившимся. Как известно, законы механики остаются справедливыми и во вращающихся системах при условии, что к силам, действующим в абсолютной системе координат, добавляются еще две массовые силы, из которых одна является функцией только положения в пространстве, а другая зависит также от скорости. Первая из этих добавочных сил равна рассматриваемой массе, умноженной на взятое с отрицательным знаком ускорение (в абсолютном пространстве) той точки вращающейся системы отсчета, которая совпадает с мгновенным положением массы. Этим ускорением, называемым переносным ускорением, в нашем случае является центростремительное ускорение где ш есть угловая скорость вращения поэтому добавочная сила, направленная в противоположную сторону, представляет собой не что иное, как центробежную силу тш г. Вторая добавочная сила равна рассматриваемой массе, умноженной на взятое с отрицательным знаком поворотное, или кориоли-сово ускорение, которое равно по модулю где V есть относительная  [c.457]


Смотреть страницы где упоминается термин Бернулли движения в механике : [c.108]    [c.148]    [c.153]    [c.158]    [c.6]    [c.144]    [c.182]    [c.316]   
Краткий справочник по физике (2002) -- [ c.6 ]



ПОИСК



Бернулли



© 2025 Mash-xxl.info Реклама на сайте