Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение движения идеальной жидкости общее

Реальная физическая задача об обтекании заданного тела, разумеется, однозначна. Дело в том, что в действительности не существует строго идеальных жидкостей всякая реальная жидкость обладает какой-то, хотя бы и малой, вязкостью. Эта вязкость может практически совсем не проявляться при движении жидкости почти во всем пространстве, но сколь бы она ни была мала, она будет играть существенную роль в тонком пристеночном слое жидкости. Именно свойства движения в этом (так называемом пограничном) слое и определят в действительности выбор одного из бесчисленного множества решений уравнений движения идеальной жидкости. При этом оказывается, что Е общем случае обтекания тел произвольной формы отбираются именно решения с отрывом струй (что фактически приводит к возникновению турбулентности).  [c.34]


Общие уравнения движения идеальной жидкости могут быть получены из дифференциальных уравнений равновесия той же жидкости, если, согласно принципу д Аламбера, к действующим силам присоединить силы инерции.  [c.73]

Установить основные уравнения движения для такого течения и изучить их свойства целесообразно исходя из общих уравнений движения идеальной жидкости, последовательно вводя ограничения для перехода к цилиндрическим потокам.  [c.12]

При использовании уравнения движения идеальной жидкости в форме (1.13) или любой другой для оценки поля скоростей во вращающемся потоке, образованном различными завихрителями, необходимо иметь в виду некоторые общие свойства как винтовых потоков вообще, так и винтовых цилиндрических потоков в частности. Эти свойства сформулированы в теореме 1, леммах 1 и 2.  [c.16]

Основные дифференциальные уравнения движения идеальной жидкости получаются путем упрощения общих уравнений движения, выведенных в гл. II. Уравнение неразрывности, как не заключающее напряжений, сохранит ту же форму, что и в общем случае неидеальной жидкости. Уравнение в напряжениях (31) упростится и приведется к виду  [c.89]

Основные дифференциальные уравнения движения идеальной жидкости получаются путем упрощения согласно равенствам (1), (2), (3) или (4) общих уравнений движения, выведенных в гл. II.  [c.125]

Уравнения движения идеальной жидкости не интегрируются в общем виде. Однако в некоторых частных предположениях о массовых силах и характере движения удается 1. Оо упрощении проинтегрировать уравнения движения жид-  [c.50]

ОБЩИЕ УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ 47  [c.47]

Общие уравнения движения идеальной жидкости. Уравнение (2.1) для случая идеальной жидкости принимает вид  [c.47]

Леонард Эйлер в своем трактате Общие принципы движения жидкостей (1755 г.) впервые вывел основную систему дифференциальных уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды с широкими задачами и строгими методами их решения.  [c.77]

Это есть общее уравнение, выражающее собой адиабатичность движения идеальной жидкости. С помощью (1,2) его можно написать в виде уравнения непрерывности для энтропии  [c.17]

В своем трактате Общие принципы движения жидкости (1755 г.) Эйлер впервые вывел систему дифференциальных уравнений движения идеальной, т. е. абстрактной, лишенной трения, жидкости, положив тем самым начало аналитической механике оплошной среды. Эйлеру механика жидкостей обязана введением понятия давления в точке движущейся или покоящейся жидкости, а также выводом уравнения сплошности или непрерывности жидкости формулировкой закона об изменении количества движения и момента количества движения применительно к жидким и газообразны.м средам выводом турбинного уравнения первоначальными основами теории корабля, а также выяснением вопроса о происхождении сопротивления жидкости движущимся в ней телам.  [c.10]


Таким образом, для решения задачи о движении идеальной жидкости мы располагаем пятью уравнениями, что позволяет считать составление общей системы уравнений Эйлера законченным.  [c.77]

Однако условия (26) не могут выполняться на решениях уравнения (25). Поскольку операция дифференцирования изменяет тип симметрии, превращая симметричную функцию в антисимметричную, нелинейные члены в (25), например при фиксированном х, антисимметричны по у, тогда как остальные члены уравнения симметричны. Симметрия типа (26) допустима лишь в следующих двух случаях а) для ползущего движения, когда нелинейные члены отсутствуют б) для стационарного движения идеальной жидкости, когда д/д1 = 0 и V = 0. В общем случае уравнение (25) допускает симметрию решений другого типа с антисимметричной функцией г]), например, -ф(ж, —у) = — х, у). Но такое решение описывает многоячеистый режим, для которого момент количества движения всегда равен пулю и противоречие отсутствует.  [c.28]

Итак, мы имеем довольно общее решение уравнений движения несжимаемой жидкости, как вязкой, так и идеальной. Однако это решение, в случае идеальной жидкости позволяющее рассмотреть целый ряд задач, в случае вязкой жидкости оказывается почти совершенно бесполезным. Допустим, например, что мы рассматриваем задачу о прямолинейном и равномерном движении твёрдого тела в жидкости со скоростью О параллельно оси х. Тогда в случае идеальной жидкости мы имеем всего лишь одно граничное условие, которое должно выполняться во всех точках поверхности S, ограничивающей тело, а именно  [c.399]

По поводу полученных в этом и предыдущем параграфах решений уравнений движения вязкой жидкости можно сделать следующее общее замечание. Во всех этих случаях нелинейный член (уу)у тождественно исчезает из уравнений, определяющих распределение скоростей, так что фактически приходится решать линейные уравнения, что крайне облегчает задачу. По этой же причине все эти решения тождественно удовлетворяют также и уравнениям движения идеальной несжимаемой жидкости, написанным, например, в виде (10,2), (10,3). С этим связано то обстоятельство, что формулы (17,1) и (18,3) не содержат вовсе коэффициента вязкости жидкости. Коэффициент вязкости содержится только в таких формулах, как (17,9), которые связывают скорость с градиентом давления в жидкости, поскольку самое наличие градиента давления связано с вязкостью жидкости идеальная жидкость могла бы течь по трубе и при отсутствии градиента давления.  [c.80]

В отличие от уравнений Навье — Стокса система уравнений (22.8) и (22.3) поддается решению в ряде важных случаев. При приближенных расчетах эта система применяется не только для исследования движения в пограничном слое на плоской пластинке, но и для исследования движения в пограничном слое на криволинейных профилях. В общем случае принимается, что координата х представляет собой длину дуги вдоль профиля, а координата у измеряется по нормали к профилю. Зависимость и х, I), задающая скорость на внешней границе пограничного слоя, определяется из решения соответствующей задачи теории идеальной жидкости. Предложены уточнения уравнений (22.8) для учета криволинейности обтекаемых профилей и для  [c.256]

Эйлер первым вывел основополагающие дифференциальные уравнения неразрывности и сохранения количества движения для общего случая движения сжимаемой жидкости в предположении, что силы трения отсутствуют (идеальная сжимаемая жидкость), широко используемые и в настоящее время. Эйлер предложил также способ интегрирования уравнений движения для стационарного и безвихревого (потенциального) течений, выполнил исследования по теории реактивной силы и теории турбин,  [c.9]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]


Следующий этап в развитии механик жидкости относится к XVni в. и связан с именами членов Петербургской академии наук Даниила Бернулли (1700—1782 гг.) и Леонарда Эйлера (1707—1783 гг.), разработавших общие уравнения движения идеальной жидкости и тем самым положивших начало теоретической гидроаэродинамике. Однако применение этих уравнений (так же как и разработанных несколько позже уравнений движения вязкой жид-  [c.5]

В середине XVIII в. Эйлер вывел общие уравнения движения идеальной жидкости. Даламберу, Эйлеру и Лагранжу принадлежат и первые исследования потенциального движения идеальной жидкости. На этой основе Лагранж построил теорию так называемых длинных волн. Рассматривалось движение волн в бесконечном прямолинейном канале постоянной глубины k. Направим ось Ох вдоль свободного уровня в его невозмущенном положении, а ось Оу — вертикально вверх и будем считать потенциал скоростей F функцией 01 X, у ж времени t. Величина у не должна значительно отличаться от нуля, поэтому разлагаем F по степеням у  [c.271]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер первый вывел основную систему уравнений движения идеальной жидкости, положив начало аналитической механике сплошной среды. Эйлеру гидродинамика обязана введением понятия давления и гфотивопоста-влением этого поиятия нью-тонианским ударам частиц жидкости о поверхность тела.  [c.21]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

Если движение идеальной жидкости, определяемое уравнением (5.1а), было в некоторый начальный момент времени безвихревым, то согласно теореме Лагранжа вихрь скорости rot и будет равен нулю в любой последующий момент времени. Условие rot и =0 означает, что существует такая скалярная функция ф, градиет которой в любой точке области течения равен вектору скорости и, т.е. и = = grad ф. При этом в общем случае  [c.184]

В XVIII в. Даниил Бернулли (1700—1782 гг.) и Леонард Эйлер (1707—1783 гг.) разработали общие уравнения движения так называемой идеальной жидкости и тем самым положили начало теоретической гидромеханике. Однако применение этих уравнений (так же как II разработанных несколько позже уравнений движения вязкой жидкости) к практическим задачам, которые выдвигала бурно развивавшаяся техника, приводило к удовлетворительным результатам лишь в немногих случаях. В связи с этим с конца XVIII в. многочисленные ученые и инженеры (Шезн, Дарси, Базен, Вейсбах и др.) начали опытным путем изучать движение воды в различных частных случаях и получили значительное число эмпирических фор-  [c.6]

Уравнения установившегося движения идеальной жидкости на поверхности тока в ортогональной системе координат на поверхности <7 , ((7з= onst) получаются из общих уравнений гл. 8 при —  [c.338]

Кроме работ по механике переменных масс, И. В. Мещерскому принадлежит ряд работ но общей маханике. Такова, например, статья Дифференциальные связи в случае одной материальной точки (1887), в которой рассматривается движение точки, подчиненной неголономной связи причем связь не является идеальной и линейной. Статья О теореме Пуассона при существовании условных уравнений (1890) посвящена интегрированию уравнений динамики. В работе Гидродтгаамическая аналогия прокатки (1919) предпринята чрезвычайно интересная попытка теоретического освещения процессов, происходящих во время прокатки, при помощи уравнений движения вязкой жидкости.  [c.250]


Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]

До сих пор мы рассматривали движение идеальной жидкости и предполагали, что процесс—адиабатический. Применим теперь общее уравнение сохранения энергии (12) к реальной (вязкой) жидкости. Для простоты будем считать жидкость неснашаемой и вначале предположим, что теплообмен выделенной струйки  [c.105]

Курс содержит четыре части, В первой из них, общей для всех частей, излагаются основные понятия кинематики и основные уравнения движения произвольной сплошной среды. Вторая часть посвящена из-ложению элементов некоторых разделов гидродинамики, уравнения движения идеальной и вязкой жидкости, аэродинамика, волновые движения у пограничный слой. Особое внимание в этом разделе уделено плоскопараллельным движениям и двумерным движениям вдоль криволинейных поверхностей. Теория фильтрации, которой посвящена третья часть у рассматривается с точки зрения применения методов гидродинамики к решению технических краевых задач. Последняя, четвертая, часть посвящена уравнениям теории упругости и применению их к некотх)рым конкретным задачам. Втюрая и третья части а также частично третья часть, независимы друг от друга и могут изучаться отдельно.  [c.2]

В монофафии выполнен сравнительный анализ уравнений движения жидкости и твердого тела в напряжениях. В результате сравнения показано, что возможно получение уравнений движения вязкой жидкости с произвольным реологическим уравнением. С позиций метода проанализирована система Навье-Стокса и отмечено существование некоторых противоречий, затрудняющих получение общего решения. Приведена иерархия уравнений движения для вязкой, невязкой и идеальной жидкости. Рассмотрено использование данного метода для расчета некоторых известных и новых частных задач. Указаны пути замыкания систем дифференциальных уравнений движения.  [c.2]

Таким образом, полная система уравнений, описывающих движение однородной несжимаемой идеальной или вязкой жидкости, состоит из уравнений Эйлера (1.39) или Навье — Стокса (1.41) и уравнения несжимаемости (1.15) и содержит четыре неизвестных ф нкцин и, р. В табл. 2 эта система записана в декартовых и цилиндрической системах координат для общего случая вязкой жидкости. Уравнения для идеальной жидкости получаются при V - 0.  [c.32]

В работах Р. М. Гарипова [11] и О. В. Воинова и А. Г. Петрова [9, 10] получены осредненные уравнения неразрывности и импульса фаз для случая смеси идеальной несжимаемой жидкости со сферическими частицами (пузырьками) нулевой массы при отсутствии фазовых перюходов, когда объемное содержание дисперсной фазы 1, так что величинами а. в степени большей единицы можно пренебречь. Указанные уравнения [9—11] получены из анализа задачи о двпженпи идеальной несжимаемой жидкости около системы N сфер с радиусами a t) v = 1,. . ., Л ) и предельного перехода N со пли L/L -> 0. При этом рассматривалось хотя и не произвольное распределение пузырьков в объеме, но, по-видимому, более общее, чем их равномерное расположение (а именно, равномерному расположению соответствует использованная нами ячеечная схема). С одной стороны, метод [9—И ], видимо, более последователен и строг, но, с другой стороны, он проходит только для случая потенциального движения идеальной несжимаемой жидкости, в то время как метод ячеек допускает анализ и получение уравнений в более сложных случаях, когда необходим учет эффектов вязкости, теплопроводности, сжимаемости, фазовых переходов, несферичности частиц и т. д. В связи с этим интересно сравнить, не вдаваясь в процедуру их вывода, уравнения [9—И] и уравнения, полученные нами.  [c.151]

Рис. 129. ного отверстия в дне сосуда (так называемое донное отверстие — рис. 129). Пусть в общем случае давление на свободной поверхности жидкости в сосуде и давление в среде, в которую происходит истечение, отличны от атмосферного и равны Pi и р. Будем считать также, что в сосуд все время поступает такое же количество жидкости, какое из него вытекает через отверстие, т. е. примем, что уровень жидкости в сосуде поддерживается постоянным и, следовательно, движение жидкости будет установившимся. Одновременно сделаем предположение, что отверстие достаточно глубоко погружено под свободной поверхностью, которая вследствие этого также может считаться горизонтальной, и значительно удалено от боковых стенок, не оказывающих ввиду этого никакого влияния на условия истечения Рассматривая сначала истечение идеальной жидкости, соста вим уравнение Бернулли для двух сечений сечения /—1 на сво бодной поверхности жидкости в сосуде и сечения 2—2 по отверс тию площади сечений соответственно обозначим через F и f Имеем  [c.184]


Запишем уравнение движения для одномерного неустановив-шегося течения идеальной сжимаемой жидкости. В общем уравнении (2.20) положим 1 = 1, / = и затем опустим эти индексы  [c.50]

Уравнение (7.12) для несжимаемой жидкости в равномерном поле сил тяжести, полученное как интеграл уравнений движения вдоль линии тока, также носит название уравнения Бернулли для элементарной етруйки идеальной жидкости. В курсе общей физики и в некоторых курсах гидравлики оно получается с помощью общих законов сохранения массы и энергии.  [c.61]


Смотреть страницы где упоминается термин Уравнение движения идеальной жидкости общее : [c.13]    [c.98]    [c.524]    [c.243]    [c.21]    [c.293]    [c.4]   
Теоретическая гидромеханика Часть1 Изд6 (1963) -- [ c.45 ]



ПОИСК



283 — Уравнения жидкости

Движения общие уравнения

Динамика идеальной жидкости и газа. Основные уравнения и общие теоремы Идеальная жидкость. Основные уравнения движения

Жидкость идеальная

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Идеальной жидкости движение

Идеальный газ в движении

Интеграл Лагранжа — Коши уравнений безвихревого движеТеорема Бернулли. Некоторые общие свойства безвихревого движения идеальной несжимаемой жидкости в односвязной области

Общие уравнения

Уравнения движения жидкости

Уравнения движения идеальной жидкости



© 2025 Mash-xxl.info Реклама на сайте