Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цилиндрические зубчатые передачи профиля зуба

Наибольшее распространение в различных технических формах имеет эвольвента окружности (рис. 232). На чертеже (рис. 233) показана цилиндрическая зубчатая передача, профиль зубьев которой имеет форму эвольвенты окружности (так называемое эвольвентное зацепление). Эвольвентный профиль встречается также в червячных зубчатых передачах.  [c.178]

Разновидности зубчатых зацеплений. Цилиндрические зубчатые передачи наружного и внутреннего зацепления эвольвентного профиля бывают прямозубые, косозубые со спиральными зубьями (геликоидальные), одинарные, блочные, шевронные, многорядные косозубые и многорядные шевронные. Конические зубчатые колеса эвольвентного профиля бывают прямозубые, косозубые, с криволинейными зубьями, шевронные.  [c.306]


Стандарт допусков цилиндрических зубчатых передач распространяется на передачи с металлическими, механически обработанными цилиндрическими зубчатыми колесами эвольвентного зацепления с углом профиля исходного контура 20°. Стандарт охватывает колеса размером от 40 до 2000 мм и модулями от 1 до 20 мм внешнего и внутреннего зацепления с прямыми, косыми и шевронными зубьями.  [c.398]

Таким образом, цилиндрическая зубчатая передача — это трехзвенный механизм с одной высшей кинематической парой, воспроизводимой поочередно вступающими в контакт сопряженными профилями зубьев.  [c.77]

Помимо чисел зубьев и /2 заданными являются модуль /и и параметры исходного контура эвольвентной цилиндрической зубчатой передачи по ГОСТ 13755 — 81 (рнс. 6.1, а) угол главного профиля а=20° коэффициент высоты головки Л<, = 1 коэффициент высоты ножки А/= 1,25 коэффициент граничной высоты А/ = 2 А, =2А + с —/у (1—8ша) коэффициент радиуса кривизны переходной кривой р/ = 0,38 коэффициент глубины захода  [c.225]

Требуемая высокая точность зубчатых колес зависит не только от точности зуборезного инструмента, но и от точности работы станка, состояния заготовок, и технологического процесса зубонарезания. Установленные нормы точности цилиндрических зубчатых передач (ГОСТ 1643 -81) (кинематическая точность, плавность работы, контакт зубьев и боковой зазо])) зависят от кинематики процесса, конструкции инструмента и условий его работы. Некоторые виды зуборезных инструментов оказывают незначительное влияние на нормы кинематической точности, но в большей степени влияют на другие нормы, например, на плавность работы, боковой зазор, а также иа отклонение шага ,,1, зубьев, погрешность профиля //> зубьев и некоторые другие.  [c.192]

По форме и расположению зубьев зубчатые колеса разделя- ются на прямозубые, косозубые, шевронные и с криволинейными зубьями. Профиль зубьев зубчатых колес может быть очерчен эвольвентой, циклоидой, дугами окружности и другими кривыми. Наибольшее распространение получили передачи с эволь вентным зацеплением. Однако в промышленности все шире начинают применять передачи с зацеплением М. Л. Новикова, облагающие высокой несущей способностью. Профиль зубьев колес этих передач очерчен дугами окружностей. Начинают также при- меняться и цилиндрические зубчатые передачи из эвольвентных конических колес. Эти передачи работают более плавно, чем обычные, имеют повышенную контактную прочность и другие преимущества.  [c.330]


Наиболее широко в машиностроении применяются цилиндрические зубчатые передачи. Термины, определения и обозначения цилиндрических зубчатых колес и передач регламентирует ГОСТ 16531—83. Цилиндрические зубчатые передачи по форме и расположению зубьев зубчатых колес разделяются на следующие виды реечные, прямозубые, косозубые, шевронные, эвольвентные, циклоидные и др. В промышленности все шире начинают применять передачи Новикова, обладающие высокой несущей способностью. Профиль зубьев колес этих передач очерчен дугами окружностей.  [c.188]

С учетом отмеченного выше можно заключить, что в прямозубых конических и цилиндрических зубчатых передачах с эволь-вентным профилем зуба реализуются два поступательных перемещения у, 2 ВДОЛЬ осей 2 и 7и одно вращательное ф , вокруг оси У.  [c.111]

В соответствии с (2.11) и (2.20) формулы для определения подвижности прямозубых конических (цилиндрических) зубчатых передач с эвольвентным профилем зуба примут вид  [c.111]

Подвижность конических (цилиндрических) зубчатых передач с непрямыми (косыми, круговыми) зубьями эвольвентного профиля определится соответственно  [c.113]

По делительной окружности измеряют шаг зацепления. Большинство зубчатых передач эвольвентные, у которых рабочий профиль зуба представляет очерченное по эвольвенте основание цилиндрической или конической поверхности (соответственно для цилиндрического или конического зубчатого колеса, рис. 145).  [c.201]

По окружности делительного диаметра измеряют шаг зацепления. Большинство зубчатых передач эвольвентные, рабочий профиль зуба представляет очерченное по эвольвенте основание цилиндрической или  [c.185]

Цилиндрические зубчатые колеса. На рис. 9.1, а изображены два цилиндрических катка, катящихся один по другому без проскальзывания. Назовем их начальными цилиндрами (в их проекции — начальными окружностями) и преобразуем катки в зубчатые колеса, прорезав с этой целью на них впадины и нарастив выступы (рис. 9.6), образующие в своей совокупности зубья определенного профиля. Очевидно, необходимое условие возможности работы передачи — равенство окружных шагов, измеренных по дугам начальных окружностей.  [c.288]

Исходный контур. Исходным контуром называется контур рейки, дающий правильное беззазорное зацепление с зубчатым колесом. Этот контур положен в основу проектирования зубчатых передач и профилирования зуборезного инструмента. Исходный контур представляет собой зубчатую рейку с прямолинейным профилем (рис. 3.83). Форма и размеры нормального (без смещения, см. 3.34) номинального исходного контура на цилиндрические колеса установлены СТ СЭВ 308—76. Параметры исходного контура угол профиля а=20° высота головки На—т высота ножки /1/=1,25/л глубина захода зубьев в паре исходных контуров /1 =2 т — эта рабочая часть рейки, т. е. то наибольшее линейное значение, на которое зубья одного колеса заходят во впадину другого радиус кривизны переходной кривой / /=0,38/п радиальный зазор с=0,25 т.  [c.336]

Зубчатые передачи можно классифицировать по многим признакам, а именно по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные) по условиям работы (закрытые — работающие в масляной ванне и открытые — работающие всухую или смазываемые периодически) по числу ступеней (одноступенчатые, многоступенчатые) по взаимному расположению колес (с внешним и внутренним зацеплением) по изменению частоты вращения валов (понижающие, повышающие) по форме поверхности, на которой нарезаны зубья (цилиндрические, конические) по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с) по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями) по форме профиля зуба (эвольвентные, круговые, циклоидальные).  [c.105]


Структура простой зубчатой передачи (рис. 6.1) характеризуется наличием двух звеньев в виде цилиндрических зубчатых колес с вращательными кинематическими парами 0 —1 и Оз—2, связанными со стойкой О и высшей парой 1 — 2, в которой и происходит соприкасание двух профилей зуба. Следовательно, подобная передача представляет собой трехзвенную замкнутую кинематическую цепь.  [c.202]

Наличием относительной скорости — скорости скольжения, направленной вдоль винтовых линий зубьев, зубчатые передачи со скрещивающимися осями отличаются от цилиндрических и конических колес, в которых есть только скольжение вдоль профилей зубьев последнее будет значительно меньше, чем скорость скольжения вдоль винтовых линий зубьев, Таким образом, в зубчатой передаче со скрещивающимися осями валов имеется скольжение зубьев двоякого рода а) основное скольжение вдоль винтовых линий зубьев б) добавочное скольжение вдоль профилей зубьев.  [c.261]

В цилиндрических колесах с прямыми зубьями соприкасание двух сопряженных профилей происходит по прямой, параллельной осям колес. Рассечем зубчатое колесо с прямыми зубьями на равные части плоскостями, перпендикулярными к оси колеса (рис. 232, а). Каждый из полученных дисков сдвинем один относительно другого на один и тот же угол. Если увеличить число ступеней до бесконечности, то получим колесо с винтовыми, или косыми, зубьями (рис. 232,6). Два сопряженных колеса должны иметь равные углы наклона р линии зуба. При внешнем зацеплении винтовая линия на одном колесе должна быть правой, а на другом - левой. Если два таких колеса привести в соприкасание, то одновременно в зацеплении будут находиться различные участки профилей, дуга зацепления возрастет на величину смещения зубьев по начальной окружности, т. е. увеличится коэффициент перекрытия ф , а это приведет к распределению нагрузки на несколько зубьев. В результате повысится нагрузочная способность, увеличится плавность работы передачи и уменьшится шум. Эти обстоятельства определили преимущественное распространение в современных передачах косозубых колес.  [c.253]

Применяемые зубчатые передачи подразделяются на передачи с параллельными валами и цилиндрическими колесами (рис. 15.1), передачи с валами, оси которых пересекаются, и коническими колесами (рис. 15.2, а, б) передачи с валами, оси которых перекрещиваются, — винтовые с цилиндрическими колесами (рис. 15,2, е) червячные и винтовые с коническими колесами, или гипоидные (рис. 15.2, г). По форме профиля зуба передачи различают эволь-вентные (рис. 15.1, а—е) с зацеплением Новикова (рис. 15.1, г) циклоидальные и цевочные (рис. 15.3, а).  [c.272]

Сопряженные боковые поверхности зубьев шестерни образуются в результате обкатки с инструментом, идентичным колесу данной передачи. Технологический процесс образования боковых поверхностей зубьев как колеса, так и шестерни весьма прост и не требует специального оборудования. Зубья колеса нарезаются на обычном универсальном фрезерном станке фрезой трапециевидного профиля методом деления или способом кругового протягивания, зубья шестерни нарезаются высокопроизводительным методом непрерывной обкатки на зубофрезерном станке для нарезания цилиндрических зубчатых колес. При этом заготовка шестерни устанавливается на шпинделе червячной фрезы, а инструмент закрепляется на шпинделе стола, дублируя таким образом зацепление шестерни с колесом.  [c.267]

Как видно из рисунка, в данном случае, даже оставляя в стороне вопрос о неравенстве скоростей по величине, скорости не будут совпадать по направлению. Поэтому между витками червяка и зубьями колеса появляется относительная скорость, которая на рис. 493, а изображена отрезком, соединяющим концы векторов У и У . Наличием этой относительной скорости (иначе скорости скольжения) У . направленной вдоль винтовых линий зубьев, зубчатые передачи с скрещивающимися осями резко отличаются от цилиндрических и конических колес, в которых не существует скольжения вдоль линии зубьев, даже если зубья винтовые или угловые. Правда, там существует скольжение вдоль профилей зубьев, но это скольжение значительно меньше, чем скорость скольжения Уск вдоль винтовых линий зубьев колеса и витков червяка.  [c.491]

Если бы мы в червячной передаче рассмотрели зацепление зубьев не в полюсе зацепления, а где-то в другом месте (на линии или поверхности зацепления), то обнаружили бы так же, как в цилиндрических и конических передачах, составляющую относительной скорости, направленную вдоль профиля зубьев. Таким образом, на винтовых зубьях червячной передачи (и вообще в любой зубчатой передаче со скрещивающимися осями валов) имеется двойное скольжение зубьев основное — вдоль винтовых линий зубьев и добавочное — вдоль профилей зубьев. В силу этих обстоятельств к. п. д. рассматри-  [c.491]

Далее в сборнике следует лабораторная работа по изучению износа одних из наиболее сложных сопряженных профилей деталей, какими являются пары зубчатых колес. В работе Исследование износа зубьев цилиндрических колес студенты изучают основные виды повреждения зубьев колес, ограничивающих срок службы зубчатых передач, а также знакомятся с пятью стендами для исследования износа зубчатых пар, работающих по разомкнутому (стенды ИС-8, ИС-9) и по замкнутому методу нагружения (стенды ИС-1, ИС-2, ИС-5).  [c.306]


Смещение колес зубчатых передач с внепшим зацеплением. Чтобы повысить прочность зубьев на изгиб, снизить контактные напряжения щ их поверхности и уменьшить износ за счет относительного скольжения профилей, рекомендуется производить смещение инструмента для цилиндрических (и конических) зубчатых передач, у которых Zi Z2- Наибольший результат достигается в следующих случаях  [c.399]

На рис. 287 приведено конструктивное изображение зубчатой передачи с внутренним зацеплением. Зубчатое колесо, находящееся внутри другого колеса, имеет очертание зубьев обычного цилиндрического зубчатого колеса. У другого колеса кривые очертания впадин должны соответствовать очертанию профиля зуба внутреннего колеса.  [c.230]

Зубчатые передачи используют для всех механизмов и применяют, как правило, в редукторах открытые зубчатые передачи применяют реже, в основном по условиям компоновки механизма, при окружной скорости не более 1,5 м/с. Используют передачи как рядовые (геометрические оси зубчатых колес неподвижны), так и планетарные (с подвижными геометрическими осями зубчатых колес). При параллельных осях зубчатых колес в основном применяют / цилиндрические эвольвентные передачи, иногда — передачи с зубьями кругового профиля (передачи Новикова). При пересекающихся осях используют конические передачи, чаще всего с межосевым углом 90 . Червячные передачи, как и конические, служат для передачи движения на валы, оси которых перекрещиваются под углом 90°. Эти передачи встречаются в механиз-  [c.180]

В передачах современных машин широко применяют зубчатые колеса, разнообразные по форме, размерам и профилям от небольших зубчатых колес для приборостроения до зубчатых колес специального профиля для тяжелого машиностроения. Наиболее распространены цилиндрические зубчатые колеса с прямыми и косыми зубьями.  [c.306]

Вид эвольвенты круга имеет, например, профиль зубьев цилиндрической зубчатой передачи—так называемое эвольвеитное зацепление. Эвольвентный профиль встречается также в червячных зубчатых передачах.  [c.133]

Угол (ра поворота колеса за интервал времени зацепления одной пары зубьев называется углом торцового перекрытия цилиндрической зубчатой передачи (ГОСТ 16531—70) и определяется суммой Фа = Ф/ + Фа, где ф — угол донолюсного перекрытия или угол поворота зубчатого колеса цилиндрической передачи, соответствующий взаимодействию активных торцевых профилей начальной ножки зуба ведущ,его и начальной головки зуба ведомого зубчатых колес — угол заполюсного перекрытия или угол поворота зубчатого колеса цилиндрической передачи, соответствующий взаимодействию активных торцевых профилей начальной головки зуба ведуще] 0 и начальной ножки ведомого зубчатых колес.  [c.292]

Методы контроля зубчатых колес. При контроле колес определяют погрешности зубонарезных и других станков, на которых производилась обработка, а также режущего инструмента. Контроль производится как по элементам точности (шаг, профиль, эксцентриситет), так и комплексно в зацеплении с эталоном. Допуски цилиндрических зубчатых передач регламентированы ГОСТ 1643—72. В машиностроении в основном применяют зубчатые колеса 5—9-й степени точности. ГОСТом установлены требования к кинематической точности зубчатых колес, плавности их работы и контакту зубьев. Допуски на конические зубчатые передачи установлены ГОСТ 1758—56, а на червячные Рис. 24. Схша изиеренш, толщины зуба штанген- переДаЧИ ГОСТ 3675—56.  [c.64]

Изменение бокового профиля зуба основной рейки с целью обеспечения плавного входа сопряженных зубьев в зацепление и уменьшения контактных давлений на участках контакта с наиболее высокими скоростями скольжения, примыкающих к ленточке зуба Расстояние между двумя смежными точками пересечения винтовой линии зуба на начальном, делительном или основном цилиндре с образующей цилиндра Зубчатая передача, состоящая из цилиндрических зубчатых колес Зубчатые колеса цилиндрической формы, служащие для передачи вращеюш между параллельными валами Цилиндрическая зубчатая передача в виде Отдельного агрегата, в котором зубчатые колеса помещены в закрытом корпусе и смазываются погружением одного из ко.лег (обычно каждой пары) в масляную ванну или струйной смазкой (под давлением), причем вне корпуса остаются лишь концы ведущего и ведомого валов (предназначенные под соединительные муфты)  [c.25]

Следует отметить, что погрешности профиля и направления зуба для конических колес не нормируются точность формы боковой поверхности зубьев и точность направления зуба могут оцениваться по полноте пятна контакта, размеры которого обычно устанавливаются по резултьатам испытания передачи под нагрузкой. Точность конических зубчатых передач условно обозначается аналогично точности цилиндрических зубчатых передач. Например, передача 8-й степени по нормам кинематической точности колес, 7-й степени па нормам плавности работы, б-й степени по нормам контакта зубьев, с увеличенным гарантированным зазором Ш обозначается Ст. 8—7—7—Ш ГОСТ 1758— 56, а передача 7-й степени точности по всем нормам с нормальным боковым зазором X обозначается Ст. 7—X ГОСТ 1758—56.  [c.365]

Так как конические (цилиндрические) зубчатые передачи с непрямыми (косыми, круговыми) зубьями эвольвентного профиля имеют еще одно независимое вращение, то они существуют в трехмерном (М = 3) четырехподвижном (П = 4) пространстве.  [c.112]

Допуски зубчатых, реечных и червячных передач регламентированы государственными стандартами. Этими стандартами установлены допуски эвольвентных цилиндрических зубчатых передач с колесами внешнего и внутреннего зацепления с исходным контуром по ГОСТ 13755-81 при т > 1 мм, эвольвентных цилиндрических и винтовых передач с исходным контуром по ГОСТ 9587-81 при т < 1 мм, а также допуски конических и гипоидных зубчатых передач и пар (поставляемых без корпуса) внещнего зацепления с прямолинейным профилем исходного контура и номинальным углом этого профиля 20°. Для зубчатых колес гипоидных передач за номинальный угол профиля принимают среднее арифметическое углов профиля на противоположных сторонах зубьев. Стандартами установлены допуски червячных цилиндрических передач и червячных пар (поставляемых без корпуса) с червяками 7А (архимедов червяк),  [c.287]

Имеется двенадцать степеней точности цилиндрических зубчатых передач, обозначаемых в порядке убывания точности цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Для каждой степени точности зубчатых колес и передач установлены нормы кинематической точности, плавности работы и контакта зубьев зубчатых колес в передаче. Требования к точности изготовления и сборки зубчатых передач зависят от условий их эксплуатации. Кинематическая точность характеризуется наибольшей погрешностью передаточного отношения за один оборот колеса плавность работы характеризуется колебаниями угловой скорости колеса в пределах одного оборота, обусловливается погрешностью шага и профиля, влияет на силу ударов и шум в передаче. Нормы контакта характеризуются пятном контакта зубьев, т. е. концентрацией нагрузки на зубьях, а определяются точностью исполнения профиля зубьев и влиятот на работоспособность силовых передач.  [c.523]


Простейшим механизмом зубчатых передач является трех-звеннын механизм. На рис. 7.9 и 7.10 показаны механизмы круглых цилиндрических колес, у которых радиусы / и г., являются радиусами центроид в относительном движении звеньев 1 п 2, и точка Р является мгновенным центром вращения в относительном движении, Если в механизмах фрикционных передач центроиды представляют собой гладкие круглые цилиндрические колеса, то в механизмах зубчатых передач колеса для передачи движения снабжаются зубьями, профили которых представляют собой взанмоогибаемые кривые. Как это видно из рис. 7.9 и 7,10, для возможности передачи движения часть профиля зуба выполняется за пределами центроид радиусов н г , а часть — внутри этих центроид. Окружности радиусов и в теории механизмов зубчатых передач называются начальны.ми окружностями. Профили зубьев подбираются из условия, чтобы нормаль в их точке касания всегда проходила через постоянную точку Р — мгновенный центр вращения в относительном движении колес 1 а 2.  [c.145]

В цилиндрической передаче с зацеплением Новикова линия зацепления расиоложена параллельно q ям зубчатых колес и поэтому площадка контакта зубьев здесь перемещается не по профилю зубьев, как в эвольвентном соединении, а вдоль зубьев. Следовательно, коэффициент перекрытия равен нулю е = О и, соответственно, зацепление с данным профилем может быть только косозубым с углом наклона зубьев р = 10...30°. При взаимном перекатывании зубьев  [c.471]

Для постоянства передаточного отношения за период зацепления двух профилей зубьев при передаче вращательного движения, осуществляемого цилиндрическими зубчатыми колесами, необходимо, п чтобы нормаль к профилям зубьев в точке их касания, проведенная в любом положении соприкасаюш,их-ся профилей, проходила через одну и ту же точку на линии центров двух колес (рис. 6.1) и делила бы линию центров в неизменном отношении. Эта неподвижная точка на линии центров называется полюсом зацепления.  [c.202]

Пзэчность зубьев. Дтя зубчатых передач характерны два основных вида повреждений излом зубьев и выкрашивание их боковых поверхностей. Исследуем условия прочности прямого зуба цилиндрического колеса по отношению к его излому. Будем считать, что зуб представляет собой пластину, заделанную одним краем в обод зубчатого колеса. Если допустить, что давление, приложенное со стороны зуба соседнего колеса, распределено вдоль линии контакта равномерно, то напряженное состояние пластины будет плоским, т. е. одинаковым в каждом сечении, перпендикулярном направлению зуба. На рис. 9.24 изображено такое сечение. Чтобы найти напряжение, рассмотрим зуб в тот момент, когда линия контакта совпадает с кромкой зуба. Сначала не будем принимать во внимание переходную кривую, которая соединяет эвольвентный профиль боковой поверхности с дном впадины, лежащей между Рис. 9 24 соседними зубьями. Тогда достаточно оче-  [c.256]

Зубошевннгованне дисковым шевером является наиболее распространенным и экономичным методом чистовой обработки зубьев незакаленных (с твердостью до ИКС 33) прямозубых и косозубых цилиндрических колес с внешним и внутренним зацеплением после зубофрезерования или зубодолбления. Шевингование применяют для повышения точности зубчатого зацепления, уменьшения параметра шероховатости поверхности на профилях зубьев, снижения уровня шума и т. д. Шевингованием можно повысить точность на одну-две степени. Точность шевингованных зубчатых колес достигает 6 —8-й степени, параметр шероховатости поверхности Ка = 0,8 -ь 2,0 мкм. Точность зубчатых колес в процессе шевингования зависит главным образом от их точности после зубофрезерования или зубодолбления и коэффициента перекрытия шевера с обрабатываемым колесом, который должен быть не менее 1,6. При шевинговании можно проводить продольную и профильную модификацию зуба. При образовании продольной бочкообразности исключается опасность концентрации нагрузки на концах зубьев. Модификация эвольвентного профиля зубьев позволяет уменьшить уровень шума и повысить срок службы зубчатой передачи. Модификацию формы зуба проводят также для компенсации деформации в процессе термической обработки.  [c.349]

Зубья колес перед шевингованием следует обрабатывать модифицированными червячными фрезами или долбяками. Утолшения — усики на головке зуба инструмента служат для подрезки профиля в ножке зуба обрабатываемого колеса, с тем чтобы вершина зуба шевера свободно повертывалась во впадине зуба. В ножке зуба инструмента делают фланкированный участок для снятия небольших фасок (0,3 —0,6 мм) на головке зуба колеса. Это препятствует образованию заусенцев в процессе шевингования и забоин на вершине зуба при транспортировании. Чтобы не сокрашать продолжительность зацепления сопряженных колес и колеса с шевером, фаски на вершине зубьев прямозубых цилиндрических колес делать не следует. При шевинговании хорошо устраняются погрешности профиля (эвольвенты) зуба и в меньшей степени — погрешности в направлении зуба, особенно на колесах с широким зубчатым венцом, а также радиальное биение на колесах-дисках, которые обрабатывают от отверстия. Чтобы установить деталь при зубонарезании и шевинговании с минимальным зазором, важно обработать с высокой точностью отверстие и посадочные места оправок или применить разжимные оправки для беззазорного центрирования. Радиальное биение вызывает накопленную погрешность шагов и поэтому должно быть минимальным. У колес-валов,, обрабатываемых в центрах, радиальное биение меньше. На точность шевингования влияет точность станка и оснастки. Биение наружного диаметра инструментального шпинделя не должно превышать 0,005 — 0,01 мм, его опорного торца—0,01—0,05 мм, торца шевера в сборе — 0,010—0,015 мм, центров задней и передней бабок — 0,005 — 0,01 мм. Точность изтото-вления и биение центрирующей шейки и опорного торца оправки должны составлять 0,005 — 0,01 мм. В табл. 24 приведены средние допустимые отклонения зубчатых колес автомобилей, которые могут быть увеличены или уменьшены в зависимости от требований, предъявляемых к зубчатым передачам.  [c.352]

Зубохонингование применяют для чистовой отделки зубьев закаленных цилиндрических колес внешнего и внутреннего зацепления. Хонингование зубьев осуществляют на специальных станках. Закаленное обрабатываемое колесо вращается в плотном зацеплении с абразивным зубчатым хоном при угле скрещивания осей 10—15°. Поджим детали,к хону осуществляется пружиной с силой 150 — 450 Н. Зубчатое колесо, кроме вращения, совершает возвратно-поступательное движение вдоль оси. Направление вращения инструмента меняется при каждом ходе стола. Хонингование позволяет уменьшить параметр шероховатости поверхности до Яа = 0,32 мкм, удалить забоины и заусенцы размером до 0,25 мм, снизить уровень звукового давления на 2 — 4 дБ и повысить долговечность зубчатой передачи. В процессе хонингования погрешности в элементах зацепления устраняются незначительно при съеме металла порядка 0,01—0,03 мм на толщину зуба. Припуск под хонингование не оставляют. Частота вращения хона 180 — 200 об/мин, подача стола 180 — 210 мм/мин, число ходов стола четыре — шесть. Время хонингования зубчатого колеса автомобиля 30 — 60 с. Срок службы монокорундовых хонов при обработке зубчатых колес коробки передач автомобиля — 1500 — 3000 деталей. Зубчатые колеса, имеющие забоины и заусенцы перед хонингованием, целесообразно обкатывать на специальном станке или приспособлении между тремя накатниками под нагрузкой для устранения погрешностей профиля зубьев. Забоины и заусенцы на зубьях обрабатываемого колеса сокращают срок службы и вызывают преждевременную поломку зубьев хона.  [c.353]

Метод копирования, при котором профиль режущей части инструмента соответствует профилю впадины зуба нарезаемого колеса (рис. 6, в), имеете в основном малую производительность и невысокую точность, поэтому его применяют ограниченно, обычно в единичном производстве для обработки неответственных зубчатых передач (например, дисковыми модульными фрезами на универсальнофрезерных станках с использованием делительной головки). Метод копирования пальцевыми модульными фрезами применяют для обработки крупномодульных цилиндрических и шевронных колес, а также когда изготовление червячными фрезами неэкономично.  [c.565]


Степень перекрытия является одним из основных факторов, обес-печивающих нормальные условия зацепления и работоспособность зубчатых передач. Если в сопряженной паре прямозубых цилиндрических колес коэффициент перекрытия будет меньше единицы, то передача не сможет выполнять положенные ей функции ввиду размыкания контакта между рабочими (эвольвентными) профилями зубьев. Когда при Eja < 1 (на участке линии зацепления) какая-либо пара зубьев выходит из зацепления, то следующая пара не успевает в него войти и ведущее колесо в определенный момент времени догонит ведомое, что неизменно сопровождается резким ударом в зацеплении.  [c.254]

Цилиндрические няются значительно чаще зубчатых колес других впдов. Они предназначены для передач с параллельными осями и имеют форму круглого цилиндра с зубьями, параллельными его оси (фиг. 24). Все сечеиия, проведенные перпендикулярно оси такого колеса, тождественны. К профилям зубьев и образованию их относится все, что было сказано выше о зубчатых зацеплениях с той разницей,  [c.293]

Общие законы зацепления цилиндрических KOvie . Вследствие указанных недостатков центроидных и фрикционных механизмов применяют зубчатые механизмы. Точка касания центроид двух звеньев в зубчатом механизме называется полюсом з а ц е п л е-н и я в этой точке относительная скорость звеньев равна нулю. В тот момент, когда точка касания профилей зубьев проходит через полюс зацепления, скольжения нет, но во всякий другой момент скольжение имеет место, и тем более, чем дальше точка касания профилей зубьев отстоит от полюса зацепления. Поэтому обычно располагают зубья вблизи центроид, которые делят зубья по высоте на наружные части (головки или выступы) и на внутренние (ножки), чтобы достичь возможно малого скольжения. Так как центроиды определяются законом передачи движения, то в каждом положении механизма полюс зацепления занимает определённое положение.  [c.188]


Смотреть страницы где упоминается термин Цилиндрические зубчатые передачи профиля зуба : [c.388]    [c.491]    [c.21]   
Приводы машин (1962) -- [ c.129 ]



ПОИСК



Зубчатая цилиндрическая

Зубчатые Зубья

Зубчатые передачи цилиндрически

Зубчатые передачи цилиндрические

Зубья цилиндрических

Передачи цилиндрические —

Профиль зуба



© 2025 Mash-xxl.info Реклама на сайте