Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическая энергия твердого тела с неподвижной точко

Кинетическая энергия твердого тела с неподвижной точкой в векторной и матричной форме может быть представлена в форме  [c.50]

Показать, что нри движении твердого тела с неподвижной точкой О кинетическая энергия сохраняется в том и только в том р. изо случае, когда вектор момента имнульса К о,  [c.97]

При движении твердого тела с неподвижной точкой в некоторый момент времени известен вектор кинетического момента тела Ко- Пайти кинетическую энергию тела, если проекции вектора Ко на главные оси инерции для неподвижной точки равны / 2, Ks.  [c.108]


Кинетическая энергия тела, движущегося вокруг неподвижной точки. Так как любое элементарное перемещение твердого тела, имеющего неподвижную точку О, представляет собой элементарный поворот с угловой скоростью (О вокруг мгновенной оси вращения 01, проходящей через эту точку (см. 60), то кинетическую энергию тела можно определить по формуле  [c.341]

Задача 338. Вывести выражение кинетической энергии твердого тела, вращающегося вокруг неподвижной точки, пользуясь выражениями проекций скоростей точек твердого тела на оси декартовых координат, связанные с твердым телом (формулы Эйлера).  [c.293]

Кинетическая энергия твердого тела при условии, что оси х, у и г жестко связаны с телом и являются главными осями инерции для неподвижной точки тела, равна  [c.88]

Если рассмотреть случай стационарных связей и сравнить выражение Т = То с выражениями кинетической энергии неизменяемой системы при поступательном движении, при движении твердого тела вокруг неподвижной точки и т. д., то становится ясным, что в одних случаях коэффициенты Про можно рассматривать как величины, аналогичные массе, в других — как величины, аналогичные моментам инерции, и т. д. Поэтому коэффициенты Про иногда называют коэффициентами инерции.  [c.130]

В качестве примера рассмотрим движение твердого тела вокруг неподвижной точки О. Пусть А, В, С — главные моменты инерции, а р, д, г—проекции угловой скорости тела на его главные оси инерции для точки О. Кинетическая энергия тела вычисляется по формуле  [c.231]

Рассмотрим, например, движение твердого тела вокруг неподвижной точки, когда существует не зависящая от времени силовая функция. Положение тела зависит от трех углов Эйлера 6, ср и ф (см. в этом томе п. 381 и следующие за ним) здесь кинетическая энергия не содержит явно 6 и если силовая функция также не содержит этого угла, то мы имеем дело с только что разобранным случаем. Тогда ф будет играть роль переменной и интеграл  [c.407]

Теперь приведем выражение для кинетической энергии твердого тела, вращающегося с угловой скоростью (О вокруг оси, проходящей через неподвижную точку тела О (рис. 176). Мы" покажем, что кинетическая энергия Т связана с (О, N и следующим соотношением  [c.232]


Кинетическая энергия Твердого тела при условии,, что оси х, I жестко связаны с телом я являются главными ося ш инерции неподвижной точки тела, равна .. .  [c.88]

Кинетический момент н кинетическая энергия тела, имеющего неподвижную точку. Согласно теореме Шаля произвольное перемещение твердого тела можно разбить на поступательное и вращательное. Таким образом, эта теорема указывает на возможность разделения задачи о движении твердого тела на две отдельные части, одна из которых касается только поступательного движения, а другая — только вращательного. В том случае, когда одна точка тела неподвижна, такое разделение является очевидным, так как в этом случае имеется только одно вращательное движение вокруг неподвижной точки, а поступательное движение отсутствует. Однако и в более общих случаях движения такое разделение часто оказывается возможным. Шесть координат, описывающих движение тела в соответствии с таким разделением, уже были нами рассмотрены. Это —три декартовы координаты некоторой фиксированной точки твердого тела (они описывают посту-пательное движение) и, например, три угла Эйлера, служащие для описания движения тела вокруг этой точки. Если начало подвижной системы выбрать в центре масс тела, то согласно уравнению (1.26) полный кинетический момент его распадается на две части одну  [c.163]

Эти выводы полностью справедливы для случая соударения абсолютно твердого тела с гладкой неподвижной или движущейся поверхностью. Только в последнем случае выражение р должно быть записано через кинетическую энергию в относительном движении по отношению к осям, движущимся поступательно с постоянной скоростью, равной -нормальной составляющей скорости той точки движущейся поверхности, о которую происходит удар.  [c.18]

Если в твердом теле, неподвижной жидкости или газе температура в различных точках неодинакова, то, как показывает опыт, тепло самопроизвольно переносится от участков тела с более высокой температурой к участкам с более низкой температурой. Такой процесс называется теплопроводностью. Внутренний механизм явления теплопроводности объясняется на основе молекулярно-кинетических представлений перенос энергии при этом осуществляется вследствие теплового движения и энергетического взаимодействия между микрочастицами (молекулами, атомами, электронами), из которых состоит данное тело.  [c.8]

Для твердого тела, вращающегося вокруг неподвижной точки с угловой скоростью (О, кинетическая энергия равна  [c.78]

Пусть твердое, тело вращается вокруг неподвижной оси, направление которой задается единичным вектором е (рис. 26), с угловой скоростью и). Поскольку модуль скорости элемента массы йт равен шр, где р — расстояние от оси е до элемента массы т, то кинетическая энергия тела как механической системы  [c.79]

Пример П. Рассмотрим вращение твердого тела с неподвижной точкой в осесимметричном силовом поле. Кинетическая энергия и потенциал допускают группу поворотов 50(2) вокруг оси симметрии поля. В этой задаче М диффеоморфно базисному пространству группы 50(3). Факторизация 50(3)/ /50(2) была впервые проведена Пуассоном (S. D. Poisson) следующим образом. Пусть е — единичный вектор оси симметрии силового поля, рассматриваемый как вектор подвижного пространства. Действие подгруппы 50(2) на 50(3) пра-  [c.102]

Кинетическая энергия твердого тела, движущегося вокруг неподвижной точки. Пусть Oxyz — жестко связанная с телом система координат с началом в его неподвижной точке О и пусть мгновенная угловая скорость тела lj направлена вдоль оси косинусы  [c.154]

ТЕОРЕМА [Остроградского — Карно кинетическая энергия, теряемая системой при ударе, равна доле кинетической энергии системы, соответствующей потерянным скоростям о параллельном переносе силы силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого действия, переносить параллельно ей самой в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится о проекции производной вектора проекция производной от вектора на какую-нибудь неподвижную ось равна производной от проекции дифференцируемого вектора на ту же ось о проекциях скоростей двух точек тела проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны друг другу Пуансо при движении твердого тела вокруг неподвижной точки подвижный аксоид катится по неподвижному аксоиду без скольжения Ривальса ускорение точек твердого тела, имеющего одну неподвижную точку, равно векторной сумме вращательного и осестремительного ускорений Робертса одна и та же шатунная кривая шарнирного четырехзвенника может быть воспроизведена тремя различными шарнирными четырехзвенниками  [c.284]


В качестве примера рассмотрим задачу Эйлера о вращении по инерции твердого тела вокруг неподвижной точки. Пространством положений N служит группа 50(3). Кинетический момент твердого тела постоянен в неподвижном пространстве. Фиксируя его ненулевое постоянное значение, можно представить кинетический момент тела в подвижном пространстве в виде функции от положения твердого тела. В результате на группе 50(3) появляется стационарное трехмерное течение можно проверить, что оно вихревое. Функция В в нашей задаче постоянна на 50(3) лишь в том вырожденном случае, когда тензор инерции шаровой поэтому в типичной ситуации rot и х г> 0. Линии тока и вихревые линии лежат на поверхностях Бернулли Г = х В х) = с , которые при некритических значениях с диффеоморфпы двумерным торам. Отметим, что критических значений всего три они совпадают с энергией вращения твердого тела вокруг главных осей инерции (при фиксированном значении кинетического момента).  [c.72]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]

Мгновенное вращение с угловой скоростью ш твердого тела будет тогда тождественно с мгновенным вращением триэдра и его составляющие р, q, г по подвижным осям Oxyz определяются вышеприведенными формулами (2). Мы займемся сейчас вычислением кинетической энергии тела и главного момента количества движения различных точек тела относительно неподвижной точки О.  [c.141]

УГОЛ естественною откоса — угол трения для случая сьшучей среды зрения — угол, под которым в центре глаза сходятся лучи от крайних точек предмета или его изображения краевой — угол между поверхностью тела и касательной плоскостью к искривленной поверхности жидкости в точке ее контакта с телом Маха — угол между образующей конуса Маха и его осью падения (отражения или преломления)— угол между направлением распространения падающей (отраженной или преломленной) волны и перпендикуляром к поверхности раздела двух сред, на (от) которую (ой) падает (отражается) или преломляется волна предельный полного внутреннего отражения — угол падения, при котором угол преломления становится равным 90 прецессии — угол Эйлера между осью А неподвижной системы координат и осью нутации, являющейся линией пересечения плоскостей xOj и x Of (неподвижной и подвижной) систем координат сдвига—мера деформации скольжения — угол между нада ющнм рентгеновским лучом и сетчатой плоскостью кристалла телесный — часть пространства, ограниченная замкнутой кони ческой поверхностью, а мерой его служит отношение нлоща ди, вырезаемой конической поверхностью на сфере произволь ного радиуса с центром в вершине конической поверхности к квадрату радиуса этой сферы трения—угол, ташенс которого равен коэффициенту трения скольжения) УДАР [—совокупность явлений, возникающих при столкновении движущихся твердых тел с резким изменением их скоростей движения, а также при некоторых видах взаимодействия твердого тела с жидкостью или газом абсолютно центральный <неупругий прямой возникает, если после удара тела движутся как одно целое, т. е. с одной и той же скоростью упругий косой и прямой возникают, если после удара тела движутся с неизменной суммарной кинетической энергией) ]  [c.288]


Если кинетическая энергия абсолютно твердого тела сохраняет постоянную величину, то конец вектора мгновенной угловой скорости с началом в неподвижной точке движется по поверхности эллипсоида, определенного уравнением (I. 106Ь). Этот эллин-  [c.90]

Формула (27) дает также выражение полной кинетической энергии Т твердого тела, вращающегося вокруг неподвижной точки О, если под Jx, Jzx подразумевать моменты инерции н центробежные моменты в системе осей Oxyz, связанных с телом и имеющих начало в точке О. Если, в частности, за оси Oxyz принять главные оси инерции в точке О, то придем к выражению (23), в котором /ь /2, /з (индексы С нужно опустить) — главные моменты инерции в точке О.  [c.297]

Далее, так как точка прпложения равнодействующей внешних сил — веса Р системы неподвижна в кёнпговой системе координат (совпадает с ее на-чало [), то работа внешних снл па 0тн0снтел11ных перемещениях системы равна пулю. Поэтому, согласно (25), кинетическая энергия Тг в относительном движении изменяется только вследствие действия внутренних сил. В частности, если рассматриваемая механическая система является твердым телом, то кинетическая энергия остается постоянной.  [c.146]

Пример 3. Устойчивость р е г у л я р н о ii п р е-цессии тяжелого г и р о с к о ii а. Рассмотрим симметричное твердой тело, имеющее одну неподвижную точку О и движущееся под действием силы тяжести. Положение оси симметрии z тела будем определять углом прецссспи г з и углом нутации 0 угол собственного вращения обозначим через ср (рис. 3.3), Кинетическая Т и потенциальная П энергии такого тела оп))еделяются равенствами  [c.92]

Если два твердых тела первоначально независимо вращаются вокруг одной и той же неподвижной оси с угловыми скоростями (Uj и а затем внезапно будут жестко соединены друг с другом, то погеря кинетической энергии, которая произойдет при этом, будет равна  [c.110]

Рассмотрим механическую систему, состоящую из одного твердого тела. Положение твердого тела в пространстве определяется положением некоторой фиксированной в нем точки, например центра тяжести G, и ориентацией тела. В соответствии с этим кинетическую энергию тела можно представить в виде суммы двух частей, одна из которых определяется движением центра тяжести G, а другая — движением относительно центра тяжести, т. е. изменением ориентации тела при центре тяжести, принимаемом неподвижным (теорема Кёнига). Имеем  [c.104]

В учебных задачах, как правило, встречаются не материальные точки, а твердые тела. В этом случае при вычислении импульса кинетического момента или кинетической энергии тела надо исходить из того, что пространственное твердое тело характеризуется массой М, положением центра масс S, тремя главными центральными направлениями е, е, е" и соответствующими главными центральными моментами инерции А, В, С. Пусть в некоторой неподвижной системе координат Oxyz точка S имеет радиус-вектор s = OS, и пусть угловая скорость тела относительно Oxyz разложена по (правому) главному реперу  [c.110]

В случае отсутствия внешних моментов твердое тело будет устойчиво вращаться вокруг оси максимального или минимального момента инерции. Вращение вокруг промежуточной оси представляет собой состояние неустойчивого равновесия. При вращении твердого тела ось вращения меняет свое положение в теле. Геометрическое место пересечений мгновенных осей вращения с эллипсоидом инерции называется полодией. Согласно геометрической интерпретации Пуансо, неподвижная точка эллипсоида находится выше некоторой фиксированной плоскости на расстоянии, пропорциональном квадратному корню из кинетической энергии, и сама плоскость перпендикулярна вектору кинетического момента. Вектор угловой скорости, а следовательно, и ось вращения направлены из неподвижной точки в точку касания фиксированной плоскости сэллипсоидом инерции. Вид полодий (рис. 25) показывает, что вращение в окрестности промежуточных осей, где полодии расходятся, будет неустойчивым. Это можно легко продемонстрировать, если бросить книгу в воздух, одновременно придав ей вращательное движение (неустойчивость вращения будет более заметна, если книга не перевязана лентой).  [c.219]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


Смотреть страницы где упоминается термин Кинетическая энергия твердого тела с неподвижной точко : [c.211]    [c.17]    [c.490]    [c.526]    [c.502]   
Классическая механика (1980) -- [ c.185 , c.186 ]



ПОИСК



Кинетическая анергия системы. Теорема Кёни. 84. Кинетическая энергия твердого тела, движущегося вокруг неподвижной точки

Кинетическая энергия и кинетический момент твердого тела, имеющего неподвижную точку

Кинетическая энергия твердого тела с неподвижной точкой

Кинетическая энергия твердого тела, движущегося вокруг неподвижной точки

Кинетическая энергия точки

Кинетическая энергия—см. Энергия

Кинетический момент и кинетическая энергия твердого тела, имеющего одну неподвижную точку

Кинетический момент и кинетическая энергия твёрдого тела, движущегося вокруг неподвижной точки

Неподвижная точка

Твердое тело с неподвижной точко

Твердое тело с неподвижной точкой

Тело с неподвижной точкой

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая твердого тела

Энергия твердого тела

Энергия тела кинетическая



© 2025 Mash-xxl.info Реклама на сайте