Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пуансо геометрическая интерпретация

Таким образом, приходим к следующей, полученной Пуансо, геометрической интерпретации движения твердого тела в случае Эйлера эллипсоид инерции для неподвижной точки катится без скольжения по плоскости, неподвижной в пространстве-, эта плоскость перпендикулярна кинетическому моменту угловая скорость тела пропорциональна длине радиуса-вектора точки касания, а по направлению с ним совпадает.  [c.162]


Пуансо геометрическая интерпретация 522 - 524  [c.724]

Параллельно с аналитическим методом в механике развивались и геометрические методы, получившие наиболее яркое развитие в работах замечательного французского ученого Пуансо (1777—1859). Он впервые (1803 г.) изложил статику в таком аспекте, в каком ее и теперь излагают во всех высших технических учебных заведениях. Много открытий и геометрических интерпретаций законов механики Пуансо сделал и в кинематике и в динамике. К их числу относится работа Пуансо по изучению геометрическими методами движения тела с одной неподвижной точкой. Эта важная задача механики имеет, как показала С. В. Ковалевская (1850—1891), однозначное решение только в трех случаях 1) движение тела по инерции вокруг центра тяжести (случай Эйлера — Пуансо) 2) движение симметричного тела вокруг точки, лежаш,ей на оси симметрии (случай Лагранжа), и 3) движение не вполне симметричного тела с определенным распределением массы (случай, открытый Ковалевской и названный ее именем).  [c.16]

Такая геометрическая интерпретация предложена Пуансо (1834 г.). 181  [c.181]

Следствие 6.7.1. (Геометрическая интерпретация Пуансо).  [c.468]

Геометрическая интерпретация Пуансо  [c.415]

Найденное соотношение является интегралом энергии. Пуансо показал, что, пользуясь интегралами (111.21) и (111.22), можно дать общую геометрическую интерпретацию движения твердого тела вокруг неподвижной точки по инерции. Чтобы получить результат Пуансо наиболее простым способом, рассмотрим уравнение эллипсоида инерции  [c.416]

Покажем, что, пользуясь первыми интегралами, положенными в основу геометрической интерпретации Пуансо, можно выразить og, сол, og через со и свести задачу к квадратуре.  [c.422]

Одной из классических задач механики является задача о движении твердого тела вокруг неподвижной точки. Эта задача имеет первостепенное значение для теории гироскопов, нашедшей широкое применение в различных областях современной техники. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо дал для того же самого случая наглядную геометрическую интерпретацию. Лагранж решил эту задачу в том случае, когда твердое тело имеет динамическую ось симметрии, проходящую через неподвижную точку. После Эйлера и Лагранжа многие ученые пытались найти новый случай решения этой задачи, т, е. новый случай интегрируемости дифференциальных уравнений движения твердого тела вокруг неподвижной точки, но безуспешно.  [c.17]


Пуансо дал изящную геометрическую интерпретацию движения твердого тела с одной неподвижной точкой в случае Эйлера.  [c.186]

Известны два непосредственных интеграла этих уравнений, выражающих постоянство кинетической энергии и кинетического момента этого тела. С помощью этих интегралов уравнения (5.36) можно проинтегрировать в эллиптических функциях, однако этот путь не очень интересен, так как можно дать изящное геометрическое описание рассматриваемого движения, не требующее полного решения задачи. Оно известно под названием геометрической интерпретации Пуансо.  [c.181]

Геометрическая интерпретация Пуансо дает полное представление о движении тела, не подверженного действию никаких сил. Ориентация неподвижной плоскости Пуансо и ее расстояние от центра эллипсоида инерции определяется значениями Т и L, которые находятся из начальных условий. Задача об определении полодии и герполодии становится тогда чисто геометрической задачей. Направление угловой скорости определяется направлением вектора р, а мгновенная ориентация тела определяется ориентацией эллипсоида инерции, который жестко связан с движущимся телом. Подробное описание рассмотренного движения с позиций картины Пуансо можно найти в ряде различных книг ).  [c.183]

Геометрическая интерпретация Пуансо. Пуансо дал замечательную геометрическую интерпретацию движения твердого тела в случае Эйлера. Эта интерпретация очень наглядна и позволяет довольно просто выявить качественный характер движения твердого тела в  [c.193]

Сам Эйлер дал общее решение своих динамических уравнений для случая, когда момент приложенных к телу внешних сил равен нулю такие условия соблюдаются с величайшей точностью, если исследуется вращение небесного тела около центра масс а другие небесные тела находятся от него на большом удалении. Л. Пуансо нашел блестящую геометрическую интерпретацию случая Эйлера, представив такое движение тела с большой наглядностью.  [c.138]

Пользуясь геометрическими построениями, Пуансо находит все основные свойства рассматриваемых механических движений. Особенно удачным было применение геометрического метода к задаче о движении твердого тела около неподвижной точки в том случае, когда момент внешних сил относительно этой точки равен нулю. Эта задача была решена аналитическим методом еще Эйлером, но геометрическая интерпретация, данная Пуансо, позволила представить это сложное движение так ясно, что исследование решения в эллиптических функциях стало почти излишним.  [c.69]

Фундаментальные результаты в этой области принадлежат русским ученым, в числе которых такие всемирно известные имена, как Н. Е. Жуковский и С. А. Чаплыгин, А. М. Ляпунов и В. А. Стек-лов С. А. Чаплыгин дал движению твердого тела в жидкости геометрическую интерпретацию, не уступающую по глубине и наглядности классической интерпретации Пуансо движения твердого тела по инерции в пустоте.  [c.26]

Пуансо применял геометрические методы исследования также в кинематике и в динамике твердого тела, где он дал весьма простую и наглядную геометрическую интерпретацию движения твердого тела.  [c.21]

Геометрическая интерпретация Пуансо движения твердого тела в случае Эйлера. В 1851 г. Пуансо дал качественную геометрическую картину движения твердого тела в случае Эйлера, основанную на кинематических свойствах этого движения.  [c.414]

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ПУАНСО 327  [c.327]

Геометрическая интерпретация Пуансо. В отличие от предыдущей интерпретации здесь используется эллипсоид инерции  [c.87]

Пользуясь геометрическими построениями, Пуансо находит все основные свойства рассматриваемых механических задач. Особенно удачным было применение геометрического метода к задаче о движении твердого тела около неподвижной точки в том случае, когда момент внешних сил относительно этой точки равен нулю. Эта задача была решена аналитическим методом еще Эйлером, но геометрическая интерпретация, данная Пуансо,  [c.36]


Геометрическая интерпретация Пуансо. Пуансо установил следующие геометрические характеристики движения твердого тела в рассматриваемом случае = 0.  [c.378]

Замечание 2. Используя построение Пуансо (см. лекцию №2), регулярной прецессии свободного симметричного волчка можно дать наглядную геометрическую интерпретацию (рис. 3.18).  [c.53]

В этой книге естественно завершена классическая ветвь динамики твердого тела, связанная с поиском возможных интегрируемых случаев. Вероятно, что другие случаи и интегралы, которые могут быть найдены в будущем, уже никогда не вызовут того внимания, как уже найденные и приведенные здесь. Классики пытались их использовать для понимания движения и делали это с переменным успехом. В динамике твердого тела увлечение геометрическими интерпретациями движения, восходящими к Пуансо, временами сменялось аналитическими исследованиями, большинство из которых, к сожалению, совершенно не было востребовано ни физиками, ни инженерами и вскоре становилось доступным лишь специалистам.  [c.11]

Пуансо, Луи (3.1.1777-5.12.1859) — французский инженер, механик и математик. Дал геометрическую интерпретацию случая Эйлера, ввел понятия эллипсоида инерции, мгновенной оси вращения и связанные с ней понятия — полодий и герполодий (1851 г.). Привел геометрический анализ устойчивости вращения твердого тела вокруг главных осей эллипсоида инерции. Пуансо, в противовес Лагранжу, настаивал на преимуществе геометрических методов в механике над аналитическими — во всех этих решениях мы видим только вычисления без какой-либо ясной картины движения тела [252]. Идеи Пуансо далее были поддержаны и развиты П. Е. Жуковским и С. А. Чаплыгиным. Геометриче-  [c.21]

Геометрическая интерпретация случая Эйлера была дана Л. Пуансо в 1851 г [257]. Согласно ее, эллипсоид инерции (эллипсоид энергии) с неподвижным центром + /2 2 + = h катится без про-  [c.95]

Свяжем теперь оба эллипсоида жестко между собой и допустим, что полученная система движется в соответствии с геометрической интерпретацией Пуансо (см. п. 143) с 0L в качестве неизменяемой прямой. Тогда прямая 0L становится сопряженной прямой и движется в пространстве так, как это было описано выше. Конус С, образованный осью 01 вокруг прямой 0L, остается неподвижным в пространстве, в то время как конус С обкатывает конус С и касается его вдоль мгновенной оси О/.  [c.136]

Луи Пуансо в работе Новая теория вращения тел (1834 г.) обогатил кинематику рядом блестящих исследований и дал наглядные геометрические интерпретации. В частности, он изучил сложение вращений и вращение тела около неподвижной точки. Эта геометрическая теория позднее была развита Понселе, Шалем, А 1ебиусом и др.  [c.119]

Геометрическая интерпретация Пуансо. Пуансо дал заме-чательнуш геометрическую интерпретацию движения твердого тела в случае Эйлера. Эта иитернретация очень наглядна и позволяет довольно просто выявить качестнед-ный характер движения твердого тела и случае Эйлера. Поэтому само движение тела в этом случае называют движением Эйлера — Пуансо.  [c.161]

Пуансо, вернувшись к частному, изученному Эйлером, случаю, когда внешние силы равны нулю, выполнил глубокое синтетическое исследование (Journal de Liouville, P serie, т. XVI) он пришел к исключительно изящной геометрической интерпретации движения.  [c.136]

Геометрическая интерпретация Пуансо. Как мы видели, полная интеграция уравнений (47.2) должна ввести шесть независимых друг от друга произвольных постоянных ( 260 и 261) мы же до сих пор нашли их только четыре С , Су, С , h. Тем не менее, как показал Пуансо (Polnsot), зная только приведённые выше простейшие ингегралы, мы в состоянии дать вполне - ясную геометрическ Ю картину изучаемого движения. С этой целью рассмотрим снова эллипсоид инерции тела, соответствующий неподвижной точке. Для взятых нами подвижных осей уравнение этого эллипсоида по формуле (26.13) на стр. 275 примет вид  [c.525]

Как известно, еще в 1758 г. Л. Эйлер рассмотрел случай движения твердого тела вокруг неподвижно точки (полюса), когда центр тяжести совпадает с полюсом, а вое силы сводятся к равнодействующей, проходящей через эту неподвижную точку. В 1834 г. Л. Пуансо дал геометрическую интерпретацию этого случая. В 1788 г. Лагранж (и независимо от него в 1815 г. С. Пуассон) рассмотрел случай, когда тело имеет ось сиАГметрии, проходящую через неподвижную точку, и движется под действием только силы тяжести, точка приложения которой лежит на оси симметрии и не совпадает с полюсом (симметрический тяжелый гироскоп — волчок). Обе задачи сводятся в общем случае к квадратурам, и их решения выражаются через эллиптические функции.  [c.246]

В случае отсутствия внешних моментов твердое тело будет устойчиво вращаться вокруг оси максимального или минимального момента инерции. Вращение вокруг промежуточной оси представляет собой состояние неустойчивого равновесия. При вращении твердого тела ось вращения меняет свое положение в теле. Геометрическое место пересечений мгновенных осей вращения с эллипсоидом инерции называется полодией. Согласно геометрической интерпретации Пуансо, неподвижная точка эллипсоида находится выше некоторой фиксированной плоскости на расстоянии, пропорциональном квадратному корню из кинетической энергии, и сама плоскость перпендикулярна вектору кинетического момента. Вектор угловой скорости, а следовательно, и ось вращения направлены из неподвижной точки в точку касания фиксированной плоскости сэллипсоидом инерции. Вид полодий (рис. 25) показывает, что вращение в окрестности промежуточных осей, где полодии расходятся, будет неустойчивым. Это можно легко продемонстрировать, если бросить книгу в воздух, одновременно придав ей вращательное движение (неустойчивость вращения будет более заметна, если книга не перевязана лентой).  [c.219]


Общая теория произгольного движения твердого тела в жидкости была дана Кирхгофом в 1869 г. и изложена в его ранее уже упомяну тых Лекциях . Теория эта является одним из наиболее изящных разделов аналитической механики. Фундаментальные результаты в этой области принадлежат Томсону и Тэту, Максвеллу, Клебшу, а также русским ученым Н. Е. Жуковскому, С. А. Чаплыгину, А. М. Ляпунову и В. А. Стеклову. С. А. Чаплыгин дал движению твердого тела в жидкости геометрическую интерпретацию, ие уступающую по глубине и наглядности классической интерпретации Пуансо движения твердого тела по инерции в пустоте.  [c.25]

Н, I, д, к в [71] А. Депри считал их основным достоинством наглядную интерпретацию решений задачи Эйлера, вполне заменяющую геометрическую интерпретацию Пуансо ( 2 гл. 2). Далее мы используем описанную конструкцию для изучения как интегрируемых, так и неинтегрируемых случаев.  [c.57]

Описанную геометрическую интерпретацию движения, ставшую образцом геометрического истолкования движения в механике, кстати, уже не имеющую такую ясную форму для других интегрируемых случаев, пытался усовершенствовать уже сам Пуансо. Он предложил вторую геометрическую интерпретацию, учитывающую время, при которой связанный с телом конус катится по плоскости, перпендикулярной вектору кинетического момента и вращающейся с постоянной угловой скоростью. Дарбу и Кёниге на основании второй интерпретации построили прибор, названный ими герполографом, предназначенный для демонстрации движения тела по инерции. Свои усовершенствования интерпретации Пуансо предложили также Якоби, Сильвестер, Мак-Куллах. Они, хотя и являются более общими, но еще более искусственными. С ними можно ознакомиться по книгам [ИЗ, 61, 163, 120] и др. Эти результаты теперь имеют лишь историческое значение.  [c.101]

Замечание 5. Геометрическую интерпретацию движения в случае Клебша при (Л/, -у) = О пытался дать С. А. Чаплыгин [173], который представил движение как качение без скольжения некоторого гиперболоида по винтовой поверхности. В работе [172] Е. И. Харламова показала, что при (Л/, -у) = О соответствующее движение может быть получено как более естественное обобщение интерпретации Пуансо эллипсоид инерции катится без скольжения по поверхности эллиптического цилиндра, неподвижного в пространстве, ось которого направлена вдоль вектора 7 и проходит через неподвижную точку тела.  [c.172]

Движения волчка в общем случае. Из примеров движения волчка, приведенных в п. 202, видно, как видоизменяется эффект действия сил на тело от вращения этого тела. Если волчок с неподвижной точкой О был первоначально в состоянии покоя, то сила тяжести заставит его повернуться вокруг оси ОВ и упасть вниз. Когда же волчок быстро вращается вокруг своей оси ОС, сила тяжести не изменяет ош,утимо наклона этой оси к вертикали, а заставляет эту ось описывать прямой круговой конус вокруг вертикали. Для того чтобы лучше понять причину этого различия, полезно изучить движение с другой точки зрения. Рассмотрим геометрическую интерпретацию Пуансо движения твердого тела по инерции и попытаемся проследить, как она будет изменяться при учете действия силы тяжести. Предположим, что тело движется произвольно и мгновенная ось вращения 01 описывает полодию с параметром р (п. 143). Пусть на тело действует пара сил с моментом Q. Если ось пары совпадает с неизменяемой прямой 0L, ее влияние выражается лишь в изменении существующего момента количеств движения G. Траектории всех точек тела в пространстве остаются неизменными, но описываются уже с другими скоростями (п. 146). Таким образом, полодия остается неизменной. Если ось пары перпендикулярна к 0L, величина мо.мента количеств движения за время dt не изменится + (Q dt) = G), хотя сама неизменяемая пря-  [c.176]


Курс теоретической механики (2006) -- [ c.522 , c.524 ]



ПОИСК



Геометрическая интерпретация

Геометрическая интерпретация Пуансо движения твердого тела с одной неподвижной точкой по инерции Устойчивость стационарных вращений Регулярная прецессия

Интерпретация

Интерпретация Пуансо

Пуансо

Случай движения твердого тела, рассмотренный Эйлером. Геометрическая интерпретация Пуансо



© 2025 Mash-xxl.info Реклама на сайте