Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции сварных соединений и распределение напряжений в них

Расчет сварных соединений при осевом нагружении. В соответствии с конструкцией сварного соединения назначают размеры шва, а затем выполняют проверочный расчет на прочность в предположении равномерного распределения напряжений по длине и сечению шва.  [c.270]

Конструкции сварных соединений и распределение напряжений в них  [c.69]

Таким образом, выполненный анализ реактивных напряжений в сочетании с имеющимися данными по распределению собственных ОСН в узлах, образованных типовыми сварными соединениями, позволяет принципиально определить напряженное состояние любого узла после окончания сварки конструкции в целом. Реактивные напряжения определяются на основе кривых представленных на рис. 5.15. 5-19. По известным размерам источников реактивных напряжений, действующих на рассматриваемый узел, определяются собственные реактивные напряжения каждого источника о . По известным расстояниям между рассматриваемым узлом и источником реактивных напряжений находятся коэффициенты снижения реактивных напряжений для каждого из источников. Зная и т) для всех соседних  [c.309]


К преимуществам клеевых соединений по сравнению с заклепочными, сварными, болтовыми и другими видами соединений относятся возможность соединения разнородных материалов, более равномерное распределение напряжений в соединениях, повышенная сопротивляемость вибрационным нагрузкам, возможность изготовления облегченных деталей и конструкций из тонких листов, исключение операций изготовления отверстий под механические крепления и соответственно упрощение и ускорение процессов сборки, большая прочность клееных конструкций, снижение веса изделий, получение клееных изделий с ровной и гладкой внешней поверхностью, исключение ослабления связываемых элементов отверстиями, герметичность соединений, получение коррозионностойких соединений, получение выгодных по прочности и весу многослойных конструкций с заполнителями, их экономичность.  [c.405]

Влияние неравномерности распределения механических свойств мета тлов различных зон сварных соединений на их напряженное состояние и несущую способность и учет ее при оценке прочности конструкций  [c.164]

Сварные соединения, как и заклепочные, условно рассчитывают в предположении равномерности распределения напряжений по сечению шва. В табл. 12 приведены некоторые значения допускаемых напряжений для сварных соединений. Данные этой таблицы могут быть использованы только для конструкций, изготовленных из СтЗ.  [c.223]

Поскольку в конструкциях резервуаров для хранения жидкого топлива используют толстые плиты, часто для увеличения производительности применяют сварку с высокой погонной энергией. Если погонная энергия при сварке слишком велика, то в зоне термического влияния сварных соединений имеет место склонность к образованию микропористости. Считается, что причиной микропористости является локальное оплавление границ зерен микропоры располагаются параллельно плоскости прокатки. Хотя микропоры вследствие их случайного распределения и малого размера (<1 мм в длину) вряд ли существенно влияют на величину разрушающего напряжения и на акустические характеристики, для улучшения условий ультразвукового контроля необходимо уменьшать микропористость.  [c.128]

При конструировании и изготовлении сварных изделий, предназначаемых для работы в самых различных эксплуатационных условиях, требовались тщательные исследования, прежде всего исследования прочности сварных конструкций. В первоначальный период применение электросварки ограничивалось металлоконструкциями неответственного назначения при этом обычно пользовались конструктивными формами соединений, разработанными многолетней практикой для клепаных конструкций. Но при использовании сварки в конструкциях ответственного назначения вскоре убедились, что сварка требует выработки новых, своеобразных конструктивных форм и деталей, отличных от клепаных, а также новой компоновки что особый характер сварных соединений требует специальных конструктивных форм для рационального распределения напряжений. Стало ясно, что применение при сварке форм клепаных конструкций не позволяло полностью использовать ее потенциальные возможности.  [c.116]


С этой точки зрения, например, принятые способы расчета сварных, заклепочных и других соединений, в которых предполагается, что к моменту разрушения распределение напряжений по сечению становится равномерным, опираются на теорию предельного равновесия. Аналогично обстоит дело и с расчетом по предельному состоянию железобетонных конструкций, которые, как известно, разрушаются хрупко.  [c.138]

Для определения схемы расчета сварных соединений необходимо предварительно рассмотреть типы сварных стыков. В сварных конструкциях паровых и газовых турбин используется большинство имеющихся типов сварных соединений. Наиболее распространенными из них являются соединения встык, в которых обеспечивается равномерное распределение силового потока VI отсутствие резких изменений сечения, вызывающих концентрацию напряжений, а также соединения впритык со скосом кромок (в тавр).  [c.52]

Деформации, напряжения и перемещения относятся к сопутствующим сварочным процессам, оказывающим отрицательное воздействие на конструкцию в процессе ее изготовления и в последующем, снижая ее эксплуатационные характеристики, ухудшая качество. Так, напряжения в сварной конструкции уменьшают величину усталостной прочности, особенно если в сварном соединении имеется концентратор напряжений. В реальных конструкциях роль надреза, т. е. концентратора напряжений, может выполнять непровар, трещина и т. п. Форма шва также определяет характер распределения напряжений наличие усиления сверху и снизу шва вызывает в месте перехода от шва к основному металлу концентрацию напряжений.  [c.498]

Положение пика растягивающих остаточных напряжений в зоне термического влияния (ЗТВ) соответствует местам образования трещин при проведении отжига. При этом с ростом толщины основного металла пик растягивающих остаточных напряжений увеличивается. Результаты исследований величины и характера распределения остаточных напряжений в биметаллах, изготовленных методом совместного деформирования, приведены в работах [4,9-10]. Наличие остаточных напряжений и исходной дефектности следует учитывать при оценке прочности биметаллических материалов и конструкций и их сварных соединений.  [c.109]

В последние годы привлекает внимание возможность экспресс-диагностики зон концентрации напряжений в элементах конструкции по методу Дубова - магнитной памяти [6], основанному на анализе распределения магнитных полей рассеяния, отображающих структурную и технологическую наследственность металла изделий и сварных соединений. В методе используется магнитострикционный эффект, возникающий при упругом и упруго-пластическом воздействии на материал в магнитном поле Земли. Он не дает количественной оценки уровня действующих напряжений. При возникновении у дефектов и трещин зон упруго-пластической деформации метод магнитной памяти проявляет себя как дефектоскопический.  [c.10]

Атомарный водород, имеющий малый диаметр, проникая в металл по границам раздела фаз и несплошностям, скапливается в порах ферритной матрицы. Дальнейшее накопление водорода приводит к его молизации, сопровождающейся возникновением повышенного давления в порах. На процесс диффузии водорода влияют поле напряжений, градиент температуры и дефектность строения металла. При неблагоприятном сочетании этих факторов в металле происходит сероводородное растрескивание и расслоение, которое может возникать внутри конструкции вдалеке от ее поверхности. Склонность к сероводородному растрескиванию под напряжением (СРН) определяется особенностями структуры металла наличием структурных неоднородностей, количеством и распределением неметаллических включений, химическим составом. СРН более характерно для высокопрочных сталей аустенитного и аустенитно-мартенситного классов и возникает чаще всего в зонах термического влияния сварных швов. Сероводородному расслоению подвергаются, как правило, сосуды, аппараты и трубопроводы из углеродистых и низколегированных сталей в отдельных случаях может происходить СРН сварных соединений.  [c.188]


Факторы, вызывающие концентрацию напряжений в сварных соединениях, очень многочисленны нерациональная форма конструкции, например, наличие резких изменений размеров, вызывающих искривления напряжений силовых потоков применение таких видов соединений, в которых распределение усилий происходит неравномерно, как, например, в длинных фланговых швах нерациональное очертание швов, не обеспечивающее плавного сопряжения наплавленного и основного металла, а главное — дефекты в швах в форме непроваров, трещин, включений и т. д.  [c.596]

Сварка вызывает в изделиях появление напряжений, существующих без приложения внешних сил. Напряжения возникают по ряду причин, прежде всего из-за неравномерного распределения температуры при сварке, что затрудняет расширение и сжатие металла при его нагреве и остывании, так как нагретый участок со всех сторон окружен холодным металлом, размеры которого не изменяются. Вследствие структурных превращений участков металла околошовной зоны, нагретых в процессе сварки выше критических точек, в свариваемых конструкциях возникают структурные напряжения. В отличие от напряжений, действующих на конструкцию во время ее эксплуатации и вызываемых внешними силами, эти напрял ения называют внутренними (собственными) и остаточными сварочными напряжениями. Если значения сварочных напряжений достигнут предела текучести металла, они вызовут изменение размеров и формы, т. е. деформацию изделия. Деформации могут быть временными и остаточными. Если остаточные деформации достигнут заметной величины, они могут привести к неисправимому браку. Остаточные напряжения могут вызвать не только деформацию сварного изделия, но и его разрушение. Особенно сильно проявляется действие этих напряжений в условиях, способствующих хрупкому разрушению сварного соединения, которое происходит в результате неблагоприятного сочетания концентрации напряжений, температуры и остаточных напряжений. Первые два фактора меньше поддаются изменению, чем остаточные напряжения, поэтому применяют ряд мер по предотвращению и снижению сварочных напряжений и деформаций.  [c.97]

Разрушение конструкций чаще всего начинается от дефектов, возникающих в сварном соединении или основном металле. Влияние дефектов на свойства сварных соединений определяется величиной и формой дефектов, частотой их повторения, материалом конструкций, условиями эксплуатации и характером нагрузки. Опасность дефектов наряду с влиянием их собственных характеристик зависит от множества конструктивных и эксплуатационных факторов. Так, влияние дефектов, представляющих собой концентраторы напряжений, во многом будет зависеть от распределения остаточных и рабочих напряжений, возникающих в процессе эксплуатации.  [c.240]

Остаточные сварочные напряжения. Распределение остаточных напряжений в сварных соединениях разнородных сталей непосредственно после сварки не отличается от обычно наблюдаемого в однородных сварных соединениях (рпс. 7). Основным источником возникновения сварочных напряжений является в обоих случаях неравномерность разогрева изделия и жесткость соединяемых деталей. Различие характеристик термического расширения может не учитываться при оценке поля остаточных напряжений в изделии. В связи с этим сварные соединения из разнородных сталей, не подвергающиеся отпуску поело сварки и работающие прп комнатной иди сравнительно умеренных температурах до 200—300°С (в зависимости от жесткости изделия), могут рассматриваться как обычные сварные конструкции из однородных сталей с неснятыми сварочными напряжениями.  [c.200]

При действии растягивающих нагрузок на соединенные внахлестку элементы конструкции максимальные напряжения растяжения возникают у границ клеевого соединения. Такое распределение деформации наблюдается не только в клеевых, но и в заклепочных и сварных соединениях внахлестку.  [c.10]

Описываемые испытания проводились при различных циклах напряжения, что позволило построить диаграммы предельных напряжений как для напряжений в основном материале, так и для напряжений в сварном шве (рис. 8.6). Из этих диаграмм видно, что предел выносливости пластин, сваренных комбинированными фланговыми и лобовыми швами, значительно ниже предела выносливости материала сварных швов. При проектировании такого рода соединений необходимо стремиться обеспечить достаточно большую длину сварных швов и такое их расположение, при котором получилось бы благоприятное распределение напряжений в основном материале, способствующее повышению предела выносливости. Иногда считают, что равнопрочная конструкция соединения, при которой вероятность усталостного разрушения по основному материалу и по сварному шву одинакова, обязательно обеспечивает максимальное значение предела выносливости. Усталостные испытания образцов соединений показывают, что это положение не всегда верно. Во многих случаях дальнейшее увеличение длины или сечения сварных швов за пределами равнопрочности соединения приводило к более выгодному распределению напряжений в основном материале и к повышению прочности соединения при переменных напряжениях. Такая возможность повышения прочности не учитывается действующими рекомендациями и проектированию сварных соединений и не отражена в принятых значениях допускаемых напряжений.  [c.202]

Следует избегать деталей конструкции и устройства сварных соединений, вызывающих значительную концентрацию напряжений и неблагоприятное распределение напряжений  [c.273]


Изменение формы элементов конструкций, которое возможно районе сварных соединений, нарушает условия распределения в них силового потока и приводит к местной концентрации напряжений. Степень концентрации напряжений в сварных соединениях зависит от их конструктивного оформления. Наличие резких изменений формы создает высокую концентрацию напряжений.  [c.38]

Первоначальные условия распределения напряжений в процессе эксплуатации конструкций могут изменяться из-за появления местных пластических деформаций в районе наибольшей концентрации напряжений. В связи с этим в дополнение к данным о первоначальных условиях распределения напряжений необходимо располагать еще характеристиками прочности сварных соединений при различных видах нагружения.  [c.57]

Структурная, химическая, геометрическая неоднородности, вызванные неравномерным нагревом, приводят к повышенной электрохимической гетерогенности сварного соединения. Термический процесс при сварке определяет неравномерное распределение собственных напряжений и образование температурных и остаточных напряжений в сварных конструкциях. Наличие собственных остаточных напряжений усложняет напряженное состояние в сварной конструкции и также повышает электрохимическую гетерогенность сварных соединений.  [c.76]

Неравномерность толщины и изменение формы изделия в сварном соединении вызывают изменение в распределении силового потока, создавая местную концентрацию напряжений (рис. 5). Наличие концентрации напряжений оказывает большое влияние на работу конструкции при вибрационной, ударной нагрузках, а также при низких температурах.  [c.46]

Неправильный режим нагрева и охлаждения изделия в процессе сварки плавлением может стать причиной появления таких серьезных дефектов сварки, как трещины, непровары, подрезы и др. Тепловое состояние металла, шлака и других компонентов, взаимодействующих в процессе образования сварного соединения, в значительной мере обусловливает характер, направление н скорость протекания всех физико-химических и металлургических процессов. Величина и характер деформаций и напряжений, возникающих в конструкциях при сварке, зависят, главным образом, от цикла нагрева и охлаждения изделия, от характера температурных полей. Особенностями распределения тепла, скоростями отвода тепла и охлаждения места сварки определяется структура металла шва и различных участков основного металла, прилегающих к шву. Наконец, с тепловыми процессами непосредственно связаны такие важнейшие характеристики сварки, как скорость нагрева металла, скорость расплавления, производительность сварки и ее техникоэкономическая эффективность.  [c.95]

К числу неудачных конструктивных форм, применяемых в сварных конструкциях, относится также соединение внахлестку, которое в ряде конструкций предпочитают другим типам соединений, так как оно обеспечивает более простое сопряжение элементов и упрощает процесс сборки, поскольку не требуется соблюдения точности в размерах сопрягаемых элементов. Однако такое соединение не обеспечивает плавность передачи силового потока от одного элемента соединения к другому, так как в местах перехода (в точках а) возникают концентраторы напряжений (фиг. 11). Неравномерность распределения напряжений при передаче усилий вызывает местные перенапряжения и может  [c.22]

Клеевые же соединения имеют ряд преимуществ- возможность соединения разнородных материалов, незначительное увеличение веса изделий, герметичные швы, гладкие соединяемые поверхности, во многих случаях незначительная стоимость производства, более равномерное распределение напряжений в соединяемых материалах, коррозийная стойкость швов Конструкции, склеенные из тонких металлических листов, при больших вибрационных нагруз.чах имеют более высокие прочностные характеристики, чем сварные и клепаные конструкция.  [c.219]

Для оценки сопротивляемости сварных соединений разрушению в агрессивных средах в условиях напряженного состояния разработан ряд методик. Напряжения в образце могут быть вызваны собственным полем остаточных напряжений за счет сварки, путем приложения внешней нагрузки или суммарным действием обоих факторов. Напряженное состояние в образцах может быть одноосным или двухосным. Испытания при одноосном нагружении внешней нагрузкой следует рассматривать как сравнительные, поскольку они не полностью воспроизводят напряженное состояние конструкций типа оболочек. Тем не менее они могут быть успешно использованы для сравнительной оценки стойкости против коррозионного растрескивания основного металла, а также влияния различных факторов неоднородности сварных соединений. Одноосные напряжения могут быть созданы постоянной нагрузкой. Статические растягивающие одноосные напряжения в образцах с заданной начальной деформацией могут быть созданы изгибом или растяжением. Для сварных соединений широко используют образцы в виде скоб (рис. 101). Различные начальные напряжения в них можно создавать, изменяя с помощью винта величину стрелы прогиба. Для выявления стойкости определенной зоны сварного соединения целесообразно использовать одноопорную схему, так как в зоне приложения нагрузки создаются максимальные напряжения. При двухопорной схеме более равномерное распределение напряжений позволяет сразу выявить слабую зону. Подготовленные таким образом образцы помещают в агрессивную среду и, если через заданное время образец не разрушился, его испытывают на растяжение. Считается, что сварное соединение может работать в условиях напрялсенного состояния, если изменение свойств не превышает 5... 10 %.  [c.174]

В настоящее время накоплен обширный экспериментальный материал по данным испытания различных легированных сталей, например марганцевых, кремниевомарганцевых, хромомолибденовых, с применением количественных (ИМЕТ-4, ЛТП МВТУ) и технологических проб (Рива, TS, крестовая). При этом для каждой из систем легирования изучено влияние содержания различных легирующих элементов (С, Мп, Si, Сг, Мо, В и др.) и вредных примесей (S, Р и др.) на сопротивляемость образованию холодных трещин, и определены эмпирические зависимости эквивалента углерода, устанавливающие допустимые соотношения между элементами, входящими в состав сталей. Эти соотношения не имеют универсального характера, так как зависят от ряда факторов, например конструкции сварного соединения и его жесткости, структурного класса присадочного или электродного материалов, способа и режимов сварки. Эти факторы изменяют не только уровень напряжений и характер их распределения в сварных соединениях, но и кинетику структурных изменений, степень развития химической неоднородности по границам зерен околошовной зоны вблизи линии сплавления со швом, содержание водорода и другие особенности, обусловливающие образование холодных трещин при сварке. Наиболее существенны при прочих равных условиях жесткость соединения и структурный класс металла шва. В связи с этим использование данных об эквивалентах углерода ограничивается обычно частными случаями, связанными с предварительными сравнительными оценками различных плавок стали или способов их выплавки в исследовательских целях. После этого, как правило, проводятся испытания стали с помощью технологических проб, в наибольшей степени соответствующих реальным условиям сварки конструкции соединений и технологическим факторам.  [c.174]


На основании выщесказанного становится совершенно очевидным, что при выборе конструкций сварных соединений и при оценке значения концентрации напряжений в отдельных сопряжениях и узлах необходимо считаться со всеми факторами, вызывающими неравномерность в распределении напряжений в элементах реальных конструкций. В противном случае может оказаться, что даже при чрезмерно высоких требованиях к форме сварных соединений не принятые во внимание факторы будут оказывать на прочность более существенное влияние, чем факторы, на основании которых была выбрана форма сварных соединений. При этом может оказаться, что чрезмерное совершенствование формы отдельных соединений в отношении прочности всей конструкции в целом будет бесполезным и только приведет к излишним затратам.  [c.136]

Расчет на прочность сварных соединений при осевом нагружении. В соответствии с конструкцией сваргюго соединения назначают все размеры шва, а затем выполняют проверочный расчет на прочность в предположении равномерного распределения напряжений по длине и сечению шва. Если результаты расчета оказываются неудовлетворительными, вносят соответствующие изменения в конструкцию и повторяют расчет.  [c.50]

Выполнить исследование распределения деформаций (с использованием соответствующих экспериментальных методов) наиболее нагруженных (определяемых предварительным расчетом) зон конструкции (зоны краевых эффектов, места концентрации напряжений, сварные соединения и т. д.) в зависимости от величины нагрузки с учетом поциклового перераспределения напряжений и деформаций.  [c.135]

На рис. 3.3.10 показаны картины распределения полос интерференции в оптических моделях сварных соединений четырех труб. Нагружение с помощью системы блоков производилось в условиях, соответствующих характеру работы сварного соединения в конструкции. Коэффициент концентрации напряжений (теоретический) подсчитывался как отношение порядковых номеров полос в зоне концентратора (мрментная зона) и в зоне номиналь-  [c.172]

Под составной конструкцией понимается такая конструкция, в которой передача растягивающей силы осуществляется несколькими силовыми элементами, параллельно включенными в силовую схему н соединенными между собой в продольном направлении заклепками, болтами или клеем. Последовательность разрушения элементов составной конструкции определяется размерами трещин в силовых элементах и распределением напряжений в них. Так как продольные стыковочные швы не обеспечивают сплошность среды между составными элементами (за исключением непрерывных сварных швов), то элементы с трещинами разрушаются в соответствии с критерия-ми механики разрушения (Л , Xi ), а элементы без трещин разрушаются при напряжениях, равных Ofloo.  [c.424]

В данной главе приводятся также общая характеристика прочности и распределение напряжений в сечениях для швов различных типов. Эти сведения могут быть полезными при проектировании сварных соединений. Подробнее о распределении напряжений в сварных швах изложено в работе [161 значения концентраций напряжений приведены в [1, 161 теоретическому определению сварочных напряжений посвящены монография (161 общим вопросам проектирования сварных конструкций — работа [22]. Перечисленные вопросы представляют интерес при оценке усталостной прочности соединений в случаях, если они подвергаются многацикловым нагружениям [1, 26].  [c.363]

Сварные соединения, подвергаемые коррозионному воздействию, в реальных конструкциях представляют собой неоднородные системы. Неоднородность обусловлена теплофизическим и металлургическим воздействием сварки на металл сварного соединения и околошовной зоны. В результате этих воздействий образуются структурно-химическая макро- и микронеоднородности, геометрическая неоднородность (непровары, подрезы, нссплавления, трещины и другие дефекты, а также конструктивные концентраторы) и неоднородность упругопластического состояния, вызванная неравномерным распределением остаточных упругих напряжений и пластических деформаций. Кроме этого, на сварное соединение действуют внешние нагрузки, вызывающие повышение напряжений в местах наличия концентраторов. Поэтому  [c.173]

Наиболее опасными элементами современных промысловых и магистральных трубопроводов и нефтехранилищ являются их сварные соединения. Наряду с остаточными термическими напряжениями после сварки в швах могут образоваться различные технологические дефекты (непровары, подрезы, газовые поры, шлаковые включения и др.), создающие условия для возникновения концентрации напряжений. В дополнение к сложным статическим и циклическим эксплуатационным нагрузкам (под действием собственного веса и технологической среды, тепловых расширений, цикличности рабочего давления и температуры, неравномерности распределения температуры и воздействия коррозии и т.д.) могут действовать неучтенные нагрузки, например из-за нарушения расчетного состояния опорно-подвесной системы, защемления отдельных участков конструкции, просацки фундамента и т. п. В результате прежде всего в сварных соединениях возникают повреждения, которые развиваются по механизму усталости, ползучести, коррозии, дисперсионного охрупчивания при повторном нагреве, водородного охрупчивания.  [c.119]

Другой не менее важной задачей повышения работоспособности сварного соединения (кроме исключения остающегося подкладного кольца) является уменьшение площади поперечного сечения сварного шва. Это может быть достигнуто путем уменьшения угла скоса кромок стыкового соединения, что позволяет снизить общий уровень остаточных сварочных напряжений и обеспечить более равномерное их распределение по сечению стенки трубы. В последнее время институтами Оргэнергострой и ЦНИИТМАШ были проведены исследовательские работы в этом направлении. Так, в 1963 г. для главных паропроводов диаметром 273x62,5 мм из стали 12Х1МФ блоков 300 тыс. квт была разработана конструкция монтажного стыка с У-образной разделкой кромок при об-  [c.85]

При сварке в соединениях трубопроводов и поверхностей нагрева возникают внутренние напряжения. Они обусловлены усадкой металла шва в процессе кристаллизации, неравномерностью распределения температур в зоне сварного соединения и жесткостью свариваемого узла. Остаточные сварочные напряжения отрицательно влияют на надежность работы конструкции. Уровень этих напряжений может иногда быть очень высоким и достигать величины предела текучести свариваемой стали, т. е. 25—35 кгс1мм .  [c.205]

Остаточные сварочные напряжения оказывают различное влияние на прочность сварных конструкций в зависимости от вида действующей на них нагрузки, а также от величины и характера распределения этих напряжений. При статической нагрузке остаточные напряжения не оказывают влияния на прочность конструкций только в тех случаях, когда металл сохраняет спо10об ость пластически деформироваться. Особенно сильно проявляется действие остаточных. напряж1ений в условиях, способствующих возникновению хрупкого разрушения сварного соединения. Хрупкое разрушение происходит в результате неблагоприятного сочетания трех факторов копцентрации напряжений, остаточных напряжений и температуры.  [c.120]

Повышенпю усталостной прочности сварных соединений способствуют а) проектирование конструкции с учетом устранения концентрации напряжений б) придание швам очертаний, обеспечивающих равномерное распределенне в них усилий в) применение технологического процесса, обеспечивающего в сварных швах отсутствие дефектов в форме непрова-ров, пор, трещин пт. д. г) последующая механическая обработка швов механическим путем (обдувка дробью, обработка пневмомолотком, проволочными щетками и т. д.) д) прокатка сварных соединений — для конструкций из некоторых сталей и сплавов е) создание деконцентраторов, способствующих уменьшению концентрации напряжений в наиболее нагруженных участках ж) соз-  [c.62]

Как было отмечено выше, сероводородное растрескивание (СР) оборудования ОНГКМ инициируется концентраторами напряжений дефекты сварных соединений (см. рис. 2.1, е 2.2, а 2.6 2.7) и технологические дефекты основного металла, резьбы (рис. 2.8, б), следы от ключей, коррозионные язвы и т.п. Результаты лабораторных испытаний сварных образцов из стали 20 также свидетельствуют о зарождении СР от дефектов (см. рис. 2.7, а), которые более чем в 10 раз снижают долговечность сварных соединений. Сопротивление СР качественных сварных соединений не ниже, чем основного металла, кроме того, за 20 лет эксплуатации сварных конструкций в металле швов в отличие от основного проката не обнаружено ни одного случая водородного расслоения. Это объясняется применением электродных материалов с низким содержанием серы, отсутствием в шве текстуры, а также тем, что условия плавления и кристаллизации шва способствуют образованию мелких сульфидных включений глобулярной формы и равномерному их распределению по литому металлу шва. В прокате из стали типа сталь 20 оборудования ОНГКМ наблюдается, особенно в срединной части стенки конструкции, значительное количество сульфидных включений дискообразной формы длиной от долей до десятков миллиметров (рис. 2.7, д). На границах раздела сульфид - матрица при охлаждении после завершения кристаллизации возможно образование микрополостей, так как коэффициент термического расширения сульфидов Ге8 - Мп8 больше, чем у ферритной матрицы (1810 К против 11,810" К" ). Металл матрицы в зоне границы раздела фаз, являясь областью объемного растяжения кристаллической решетки, может выполнять роль коллекторов для водорода. Образующийся в результате контакта стали с сероводород со держащей средой водород, попадая в эти несплошности, молизуется, вызывая водородное растрескивание (ВР) металла. Трещины ВР зарождаются внутри металла на границах раздела матрица - включение и распространяются, как правило, межкристаллитно в направлении, параллельном его поверхности при взаимодействии этих тре-щин-расслоений возникает ступенчатая магистральная тре-  [c.70]


При оценке влияния пористости на механические свойства сварных соединедай необходимо располагать данными о чувствительности металла шва в сварном соединении к концентраторам-дефектам в зоне дефекта (см. раздел 1), а также значениями теоретических коэффициентов концентрации напряжений пор Кп и теоретическими коэффициентами концентрации формы шва ф. Концентрация напряжений в сварных швах с порами зависит от типа пористости, характера распределения пористости в шве и геометрической формы пор. С этих позиций в сварных конструкциях следует различать единичную пористость (расстояние между порами больше трех диаметров наибольшей поры), пористость в виде цепочек (не слившиеся поры с расстоянием между ними меньше трех диаметров поры), скопление неслившихся пор и слившиеся поры, которые, как правило, сопровождаются окисными пленками.  [c.161]

При закручивании таких стержней напр-яжения распрёделяются весьма неравномерно по сечению. Особенно неблагоприятно распределение напряжений в местах соединения лонжеронов с поперечинами. Основной причиной выхода рамы из строя являются усталостные разрушения лонжеронов и поперечин в местах наибольшей концентрации напряжений, а именно, в местах крепления поперечин к лонжерону, при этом разрушения обычно начинаются от отверстий под заклепками. Этим объясняется стремление к созданию сварных конструкций рам, обладающих большей усталостной прочностью.  [c.324]

Распределение остаточных напряжений в основных типах сварных соединений исследовано экспериментально и теоретически довольно широко. Продольные остаточные напряжения 0 в сварных соединениях, выполненных внахлестку, угловых и втавр, как по величине, так и по распределению в основном аналогичны напряжениям в стыковых соединениях, т. е. максимальные их значения в конструкциях из низкоуглеродистых и аустенитных сталей близки к 0 . Помимо продольных, в сварных однопроходных соединениях возникают также и поперечные остаточные напряжения сГу.  [c.145]

В другом примере (рис.3.3.4, б) пусть механическая характеристика Ор — сопротивляемость хрупкому разрушению сварного соединения при низкой температуре имеет закон /(Ор). Пиковые лшксимальные нагрузки, например, при работе бульдозера дают распределение максимальных напряжений в виде За счет выбора различных сечений элементов конструкций расчетчик может изменить положение кривой F(o ) без изменения ее формы. Если минимальное значение задать как отстоящее от с на 2 s , а максимально возможную расчетную нагрузку также задать в виде числа, которое при каком-то значении сечения дает max max будет восприниматься как коэффициент запаса,  [c.40]


Смотреть страницы где упоминается термин Конструкции сварных соединений и распределение напряжений в них : [c.516]    [c.772]   
Смотреть главы в:

Детали машин издание 2  -> Конструкции сварных соединений и распределение напряжений в них



ПОИСК



Конструкция напряжений

Напряжения сварные

Распределение напряжений

Распределение напряжений в сварных соединениях

Сварные конструкции

Сварные конструкции — Соединения

Сварные швы распределение напряжений в них



© 2025 Mash-xxl.info Реклама на сайте