Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород атомарный

Кроме коллекторов, заполненных молекулярным водородом, атомарный, т. е. диффузионно-подвижный водород попадает в ловушки внутренней структуры металла (вакансии, дислокации, области объемного растяжения кристаллической решетки), обусловленные полями внутренних локальных микронапряжений.  [c.451]

При резании в связи с интенсивным массообменом с зоной резания состав среды дополнительно изменяется (рис. 16) увеличивается содержание водорода, атомарного кислорода и группы МгЧ-Ч-СО. Содержание молекулярного кислорода и воды уменьшается. Изменение во времени этих составляющих среды, за исключением атомарного кислорода, приблизительно может быть описано экспоненциальной функцией (рис. 16,6). Содержание водорода быстро растет с увеличением скорости резания. Для исключения влияния десорбции слоев среды, приобретенных заготовкой при хранении на воздухе, перед регистрацией состава среды при резании в вакууме слой металла глубиной 0,5 мм предварительно удаляли при давлении 5-10 3 Па.  [c.75]


Атомарный водород. Атомарный кислород Атомарный азот. . . Азотная кислота. . Перекись водорода Четырехокись азота. Этиловый спирт. . .  [c.403]

Внутреннее трение 242, 246, 381, 382 Водород атомарный 84, 85  [c.1642]

Рн Рн, Рн .н — парциальные давления водорода (атомарного, молекулярного) в газовой фазе  [c.219]

Трещины могут возникнуть в металле из-за действия водорода. Атомарный водород соединяется в молекулы и создает большие давления внутри зерен, что приводит к образованию трещин.  [c.23]

Трещины могут также возникать в металле из-за действия водорода. Атомарный водород соединяется в молекулы и создает большие давления внутри зерен, что приводит к образованию трещин. Трещины могут возникать в металле под влиянием мартенситного превращения. Мартенсит обладает меньшей удельной плотностью, что ведет к созданию дополнительных внутренних напряжений между частицами металла, вызывая появления трещин. Трещины могут возникать и от выпадения из растворов частиц сульфидов, нитридов, закиси железа и др., что тоже является причиной внутренних напряжений.  [c.144]

Высокая температура сварочной дуги вызывает также диссоциацию (распад) молекул кислорода и азота в атомарное состояние. Обладая большой химической активностью, эти газы интенсивнее взаимодействуют с расплавленным металлом шва. В зоне дуги происходит распад молекул паров воды с диссоциацией молекул водорода, атомарный водород активно насыщает металл шва. Высокая температура способствует выгоранию примесей и тем самым изменяет химический состав свариваемого металла. Небольшой объем ванны расплавленного металла (при ручной сварке он составляет 0,5—1,5 см при автоматической — 24—300 см ) и интенсивный отвод теплоты в металл, окружающий ванну, не дает возможности полностью завершиться всем реакциям взаимодействия между жидким металлом, газами и расплавленным шлаком. Большие скорости нагрева и охлаждения значительно ускоряют процесс кристаллизации, приводят к образованию закалочных структур, трещин и других дефектов. Под действием теплоты происходят структурные изменения в металле околошовной зоны, которые также приводят к ослаблению сварного шва.  [c.101]

В 1913 г. Бор применил квантовую гипотезу к атомным системам и вывел теоретически наблюдаемый спектр атома водорода. Ранее спектр был описан уравнением, содержащим эмпирическую постоянную Ридберга, которую по теории Бора можно вычислить с помощью известных физических постоянных, включая постоянную Планка h. Успех квантовой гипотезы в объяснении излучения черного тела и спектра атомарного водорода обеспечил твердую основу для развития новой механики, которая может дать все результаты классической механики и правильные ответы на вопросы, которые классическая механика не могла разрешить.  [c.71]


Водород поглощается сталью н атомарном состоянии. При охлаждении сплава растворимость водорода уменьшается, и в молекулярной форме он накапливается с микропорах под высоким давлением, Таким образом, водород может стать причиной образования внутренних надрывов в металле (флокенов).  [c.14]

В жестких сварных узлах, в которых образуются высокие сварочные напряжения, в закаленной з. т. в. возможно образование холодных трещин. Склонность к холодным трещинам повышается при насыщении металла водородом, который снижает пластичность закаленного металла. Источником водорода служит влага в покрытиях электродов, флюсах и защитных газах, которая разлагается в дуге, и атомарный водород насыщает жидкий металл сварочной ванны. В результате диффузии водорода им насыщается также 3. т. в.  [c.232]

Полагая, что адсорбция мала и активность адсорбированного атомарного водорода пропорциональна его концентрации, можно принять  [c.258]

Взаимодействие металла с газами. При дуговой сварке газовая фаза зоны дуги, контактирующая с расплавленным металлом, состоит из смеси N4, О2, На, СОа, СО, паров НаО, а также продуктов их диссоциации и паров металла и шлака. Азот попадает в зону сварки главным образом из воздуха. Источниками кислорода и водорода являются воздух, сварочные материалы (электродные покрытия, флюсы, защитные газы и т. п.), а также окислы, пов рх-ностная влага и другие загрязнения на поверхности основного и присадочного металла. Наконец, кислород, водород и азот могут содержаться в избыточном количестве в переплавляемом металле. В зоне высоких температур происходит распад молекул газа на атомы (диссоциация). Молекулярный кислород, азот-и водород распадаются и переходят в атомарное состояние 0а5 20, Ыа 2 2Н, Н2 2Н. Активность газов в атомарном состоянии резко повышается.  [c.26]

Механизм растрескивания объясняют развитием внутреннего давления [54], вызванного скоплением в пустотах и других благоприятных местах газообразного водорода, образующегося при молизации атомарного водорода, растворенного в кристаллической решетке.  [c.150]

Например Л//нг=0, а ЛЯн=217,9 кДж/моль, так как при стандартных условиях водород устойчив в виде молекул Нг, а для получения атомарного водорода надо затратить энергию, т. е. увеличить энтальпию на 217,9 кДж на 1 моль атомарного водорода.  [c.256]

Н2 2Н, Kp=- =fiT), отсюда парциальное давление атомарного водорода  [c.287]

Подставляем значение парциального давления атомарного водорода в уравнение (8.71) и получаем  [c.287]

Диссоциация молекул водорода на отдельные атомы (АИ>0) или возникновение атомарного водорода в результате разрядки ионов водорода на катоде электролизера, а это тоже процесс с затратой энергии.  [c.344]

Водород, поглощенный из атмосферы дугового разряда, в которой он находится в атомарном и в ионизированном состояниях, при кристаллизации резко понижает свою растворимость  [c.403]

Все формы водорода находятся в термодинамическом равновесии, зависящем от температуры. При повышении температуры свыше определенного уровня начинается заметный переход одних его форм в другие растворимый неравновесный — в равновесный, связанный в ловушках — в растворимый, молекулярный — в атомарный.  [c.533]

Необходимым условием активного протекания коррозии в сероводородсодержащих средах является наличие влаги, в которой сероводород находится в диссоциированном состоянии. В этом случае имеет место электрохимическая коррозия, катодный процесс протекает с водородной деполяризацией, в результате чего в системе образуются атомарный и молекулярный водород. При относительно малой влажности (4-26%) сероводород оказывает незначительное влияние на углеродистую сталь, вызывая, например, в течение 30 суток лишь потускнение ее поверхности. Наличие капельной влаги усиливает сероводородную коррозию сталей примерно в 100 раз по сравнению с атмос([)ерой сухого газа [13].  [c.14]

Значение приведенной массы сильнее зависит от более легкой из двух масс. Отклонение х атома водорода от т легко можно обнаружить по спектру атомарного водорода.  [c.282]


Азотирование стали (азотизация) производится с целью повышения твердости поверхности изделия за счет насыщения азотом- и образования нитридов. Процесс состоит в нагревании изделий при 500—650° в закрытом сосуде, куда вводится под давлением аммиак (NH3). При этих температурах аммиак разлагается на азот и водород. Атомарный азот в момент выделения, соединяясь с железом и другими элементами стали, образует твердые нитриды (Fe4N, AIN и др.), диффундирующие в поверхностные слои изделия. Азотированный слой глубиной в 0,01—0,5 мм образуется медленно, в течение 5—35 час. Обычна азотируют только легированную сталь. Хром, ванадий, вольфрам и алюминий способствуют азотированию и получению более высокой твердости.  [c.194]

Выделение избыточного атомарного водорода из решетки железа происходит при сравнительно низких температурах (100—200° С), а молекулярного водорода из замкнутых полостей металла — при более высокой температуре (400—800° С), когда поверхностная диссоциация и растворение атомарного водорода протекают с измеримой скоростью. Десорбция водорода из металла может характеризоваться проницаемостью, которая зависит от абсорбции его поверхностью и диффузионной подвижности внутри объема стали. Как уже отмечалось, диффузионной подвижностью обладает водород атомарный и особенно протон. При наличии пор в металле происходит необратимый процесс превращения диффузионнонодвижного водорода в молекулярный, т. е. диффузионнонеподвижный. Поэтому проникновение водорода через металл зависит от наличия искажений в кристаллической решетке, протяженности границ зерен, количества и характера неметаллических включений, пористости. Все эти дефекты в структуре способствуют изменению растворимости и проникновению водорода в металл.  [c.76]

Влияние азота, кислорода и водорода. Эти элементы присутствуют в сплавах или в составе хрупких неметаллических включений, например оксидов РеО, SiOj, Al. O ,, нитридов Fe4N, или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).  [c.14]

Величина перенапряжения водорода на разных металлах была также связана Н. И. Кобозевым и Н. И. Некрасовым с адсорбционной способностью металлов по отношению к атомарному водороду, которая характеризуется величиной работы Ладе или теплоты адсорбции  [c.258]

Для всех сталей и сплавов, помимо указанных выше способов, рекомендуется также способ, основанный на восстановлении окислов атомарным водородом. В этом случае образцы после испытания погружают в ванну с расплавленным металлическим натрием, через который непрерывно продувают сухой аммиак. Температура расплава 350—420° С, длительность процесса 1—2 ч. Выбранный режим обработки необходимо проверять на неокис-ленном образце. Контрольный неокисленный образец не должен изменять свою массу в течение времени, соответствующего выбранному режиму удаления продуктов окисления.  [c.441]

В процессе изготовления ламп во время отпайки оболочки освобождается некоторое количество водяного пара и этот пар будет добавляться к тому небольщому количеству, которое остается после дегазации стекла в процессе длительного отжига. Чистая стеклянная поверхность сильно адсорбирует атомарный водород, однако количество водорода, адсорбированного до того, как стекло начинает освобождать его в виде молекулярного водорода, очень невелико. Тем не менее, несмотря на образующийся при отпайке водяной пар, создавать стабильные лампы возможно, и представляется вероятным, что для са-моподдерживающегося водяного цикла требуется некое определенное минимальное количество водяного пара.  [c.354]

Такое разрушение имеет место в результате поверхностной коррозии стали в кислой среде, содержащей сероводород. Выделяющийся атомарный водород диффундирует внутрь металла, скапливается на границах включений, молизуется и создает участки высокого давления. Внутренние пузыри и трещины концентрируются в местах наибольшей интенсивности напряжений, таких как игольчатые включения, ориентированные по направлению прокатки включения эллиптической формы менее опасны. В последней фазе разрушения трещины проходят перпендикулярно к первоначальным, продольным.  [c.153]

Другой механизм может быть обусловлен развитием водородного растрескивания вдоль границ зерен сенсибилизированного сплава. Разрушение в этом случае протекает в кислой среде, так как она поставляет водород, необходимый для коррозионного процесса. Кислая среда способствует также образованию молекулярной формы HjS (а не HS или S "), которая является основной каталитической примесью, стимулирующей абсорбцию сплавом атомарного водорода. Показано, что водные растворы SO2 так же, как и растворы политионовых кислот, вызывают межкристаллит-ное растрескивание сенсибилизированной стали 18-8. Это объясняется быстрым восстановлением SOj на катодных участках с образованием HjS или других аналогично действующих продуктов восстановления. Ионы SO не способны к такому восстановлению, поэтому серная кислота вызывает растрескивание в значительно меньшей степени.  [c.323]

Флокены - это несплошности типа трещин. Считается, что чаще всего образованию флокенов способствует бьютрое охлаждение стали, содержащей водород, в диапазоне температур от 200 до 20°С, при этом водород, выделяясь из раствора и переходя из атомарной формы в молекулярную, создает большие внутренние напряжения, приводящие к образованию трещин. Наиболее часто флокены встречаются в хромоникелевой стали.  [c.303]

Установлено, что сульфидное растрескивание связано с проник-вовонием в металл атомарного водорода, образующегося в ходе катодной реакции. Причём сам сероводород непосредственно в реакции не участвует, а лищь каталитически ускоряет разряд ионов водорода.  [c.13]


Р ис. 1. 1. Схема процеоса сероводородной коррозии а) - анод ая реакция ионизации железа и образования сульфида б) - катодная реакция деполяризации и восстановление атомов водорода в) - диффузия атомарного водорода в металле г) молизация атомарного водорода в замкнутой поре 2 сте11ки трубы I  [c.13]

Атом позитрония — это водородоподобный атом без протона, состоящий из позитрона и электрона. Позитрон — частица с массой, равной массе электрона, но имеющая положительный заряд е. Из уравнения (51) следует, что линейчатые спектры атомарного водорода и позитрония сходны (рис. 9.11), а их различие обусловлено только тем обстоятельством, что приведенная масса атома позитрония составляет около половины  [c.282]

Айвс и Стилуэлл (Opt. So . Am., 1938, у, 28, p. 215 1941, v. 31,. p. 369) выполнили спектральные опыты с пучками водородных атомов, находившихся в возбужденных электронных состояниях. Атомы, входившие в состав молекулярных водородных ионов-и Н+, ускорялись в сильном электрическом поле. Как продукт распада ионов образовывался атомарный водород. Скорость его атомов имела порядок р = 0,005. Айвс и Стилуэлл определяли смещение средней длины волны отдельной спектральной линии, испускаемой атомами водорода. Среднее значение бралось по направлениям вперед (в) и назад (н) относительно траектории полета атомов. Из (42) получаем, считая Рв = —Рн, что средняя длина волны  [c.360]

Вопрос о связи коэффициентов Атп с внутренним строением атома выходит за рамки теории Эйнштейна. Этот вопрос полностью разъяснен квантовой механикой, и разработанные в ней методы позволяют рассчитывать значения А п практически для любого перехода, исходя из свойств уровней т, п. Ниже приводятся в качестве примера коэффициенты Атп Для некоторых линий атомарного водорода (серии Лаймана L и Бальмера Н)  [c.733]


Смотреть страницы где упоминается термин Водород атомарный : [c.354]    [c.552]    [c.236]    [c.428]    [c.498]    [c.445]    [c.248]    [c.345]    [c.256]    [c.345]    [c.533]    [c.533]    [c.13]    [c.18]    [c.15]   
Теория сварочных процессов (1988) -- [ c.533 ]

Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.84 , c.85 ]



ПОИСК



Водород

Водород атомарный кристаллическую решетку

Металлический (атомарный) водород

Определение водорода атомарного

Резонансная флуоресценция атомарного водорода



© 2025 Mash-xxl.info Реклама на сайте