Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сероводородное растрескивание

Помимо общей и язвенной коррозии сварных конструкций сероводород вызывает сероводородное растрескивание и водородное расслоение металла оборудования и трубопроводов.  [c.7]

Рис. 1. Сопротивляемость сталей сероводородному растрескиванию (СР) в зависимости от содержания в среде НгЗ и общего давления р Рис. 1. Сопротивляемость сталей сероводородному растрескиванию (СР) в зависимости от содержания в среде НгЗ и общего давления р

С повышением внутренних механических напряжений возникает восприимчивость металла к сероводородному растрескиванию.  [c.14]

Рис. 4. Сероводородное растрескивание насосно-компрессорных труб в местах их захвата цепным ключом (а), в средней части труб (б) Рис. 4. Сероводородное растрескивание <a href="/info/558199">насосно-компрессорных труб</a> в местах их захвата цепным ключом (а), в средней части труб (б)
Трещины сероводородного растрескивания в насосно-компрессорных трубах скважины № 234 возникали на расстоянии 400-600 мм от соединительных муфт и начинали свое развитие с острых вмятин, образовавшихся при захвате труб цепным ключом.  [c.21]

Рис. 6. Сероводородное растрескивание затрубной задвижки (а), буферного фланца (6) и корпуса задвижки (в) Рис. 6. Сероводородное растрескивание затрубной задвижки (а), буферного фланца (6) и корпуса задвижки (в)
Сквозная язвенная коррозия и сероводородное растрескивание корпуса задвижки скважины № 10011, изготовленного из ферритно-перлитной стали с содержанием углерода до 0,25% (твердость 170 НВ), произошли после четырех лет эксплуатации в местах расположения в корпусе металлургических раковин и пор (диаметр последних достигал 9 мм (рис. 6в)).  [c.27]

Рис, 8. Сероводородное растрескивание сварных соединений шлейфовых трубопроводов  [c.30]

Наличие остаточных технологических напряжений, возникающих при гибке, металлургических дефектов, а также воздействие сероводородсодержащей среды привели в условиях вибрации отвода к усталостному сероводородному растрескиванию металла (на поверхности излома обнаружены усталостные бороздки).  [c.35]

Случаи сероводородного растрескивания корпуса крана (рис. 12е) обусловлены металлургическими дефектами в очаге разрушения и в прилегающих зонах наблюдается большое количество неметаллических включений, пор, трещиноподобных дефектов. Кроме того, пластические свойства образцов из металла корпуса более чем в 2 раза ниже требуемых.  [c.41]

НВ < 235). При визуальном осмотре в верхней части кольцевого шва обнаружена трещина длиной 300 мм, а методами ультразвуковой дефектоскопии зафиксировано ее развитие в металле шва на расстояние 1200 мм. Характер разрушения хрупкий, поверхность излома покрыта продуктами коррозии, растрескивание начинается от непровара (рис. 13). В зоне термического влияния под корневым слоем в области очага разрушения обнаружен участок укрупненного бейнитного зерна с твердостью 266-285 НУ. В следующих далее слоях сварного соединения в зоне термического влияния наблюдается мелкозернистая нормализованная структура с твердостью 210-221 НУ. Сероводородное растрескивание сварного соединения инициировал концентратор напряжений — непровар в сочетании с бейнитной структурой металла, обладающей высокой твердостью.  [c.42]


Рис. 13. Сероводородное растрескивание сварного шва корпуса шарового клапана Рис. 13. Сероводородное растрескивание сварного шва корпуса шарового клапана
Рис. 14. Сероводородное растрескивание в области резьбы форсунки (х50) Рис. 14. Сероводородное растрескивание в области резьбы форсунки (х50)
Основное количество повреждений (247) наблюдалось в течение первых шести лет эксплуатации. В 1971-1973 гг. оно непрерывно возрастало. В следующие три года несколько снизилось, но все же находилось на недопустимо высоком уровне. Затем количество повреждений снизилось до минимума и держалось на таком уровне до 1995 г. В последние годы начали поступать сведения об одиночных коррозионных повреждениях трубопровода, причина возникновения которых требует выяснения. Большинство повреждений имело вид нераскрывшихся коррозионных трещин различной длины (20-150 мм) на продольных заводских сварных швах поблизости от кольцевых монтажных швов или непосредственно на них. Известно, что с момента ввода в эксплуатацию по апрель 1972 г. по трубопроводу Оренбург-Заинск транспортировался неингибированный газ с содержанием Н25 до 2,5% об., который мог вызвать сероводородную коррозию металла, проявляющуюся в разных формах — от общей равномерной коррозии до водородного расслоения и сероводородного растрескивания.  [c.62]

Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]

Согласно стандарту NA E MR 0175-97, природный газ, содержащий сероводород при парциальном давлении более 0,35 кПа, считается сернистым, то есть вызывающим сероводородное растрескивание [7].  [c.11]

Исследованиями ЮЖНИИГИПРОГАЗа установлено, что в условиях минимального коррозионного воздействия эксплуатируются межблочные коммуникации емкость Е-01-выходной коллектор У КП Г при эффективной низкотемпературной сепарации. Все остальные линии эксплуатируются в присутствии электролита. Согласно рис. 3, все межблочные коммуникации, линии обвязки и шлейфы скважин-доноров подвержены сероводородному коррозионному растрескиванию. Прогнозируемая скорость общей коррозии составляет 0,1-0,3 мм/год. В диапазоне рабочих температур скорость общей коррозии металла относительно невысока, а его стойкость к сероводородному растрескиванию также является низкой (рис. 3).  [c.13]

На ОНГКМ отмечались также многочисленные случаи сероводородного растрескивания насосно-компрессорных труб (0114 мм, сталь марки 18Х1Г1МФ отечественной поставки) скважин (рис. 4). Разрушению подвергались как резьбовые соединения, так и сами трубы. В большинстве случаев время эксплуатации насосно-компрессорных труб до разрушения составляло менее 1,5 лет.  [c.19]


Было также показано, что геометрические параметры резьбовых соединений насосно-компрессорных труб скважин № 565 и № 566 из стали 18X1Г1МФ не соответствовали требованиям технических условий. Наличие дефектов резьбы приводило к возрастанию растягивающих напряжений в резьбовых соединениях в 1,5-2 раза. В результате разрушение некоторых иасосно-компрессорных труб происходило через несколько суток эксплуатации по причине сероводородного растрескивания металла, вызванного совместным воздействием сероводородсодержащих сред и повышенных напряжений в резьбовых соединениях.  [c.20]

Сероводородное растрескивание металла муфт насоснокомпрессорных труб отечественной и импортной поставок происходит также при отсутствии эффективного ингибирования под действием коррозионной среды и высоких растягивающих напряжений, возникающих преимущественно в зоне концентраторов напряжений при затяжке муфт.  [c.21]

Фонтанная арматура выходит из строя, главным образом, вследствие сероводородного растрескивания ее деталей. На ОНГКМ применяется запорная арматура шести фирм, которые используют при ее изготовлении свыше 50 различных марок материалов. Опыт эксплуатации показывает, что у запорной арматуры фирмы FM ненадежен спецфланец, у арматуры фирмы ameron — шток задвижки.  [c.21]

Установлено, что основной причиной разрушения адаптеров являлось воздействие сероводородсодержащего газа на металл, имеющий дефектную структуру (грубодендритная структура с усадочными порами и несплощностями), которая способствовала замедленному сероводородному растрескиванию металла адаптеров.  [c.24]

Исследования микроструктуры стали выявили скопление хрупких составляющих (а-фазы и 8-эвтектоида) по границам зерен (как и в случае металла спецфланца), образовавшихся вследствие нарушения технологии термообработки задвижек, а также превышения процентного содержания ферритной составляющей структуры. Исследование металла новых задвижек показало аналогичную структуру, в связи с чем вся партия задвижек была отбракована и заменена на новую. Сероводородное растрескивание 6" задвижки фирмы ДаЬазЬ К1ка1 обусловлено охрупченным состоянием материала корпуса задвижки и несоответствием его механических свойств данным сертификата.  [c.25]

Буферный 4" фланец из стали Uranus 50 фонтанной арматуры разрушился через семь лет эксплуатации (рис. 66). Зарождение и распространение трещин сероводородного растрескивания происходило по границам зерен аустенита в местах скопления карбидов железа. Обеднение границ зерен карбидами хрома было вызвано, вероятно, нарушением режима термической обработки фланца, твердость металла которого достигала 25 HR .  [c.27]

В 1974 г. произошло разрушение трубопровода 0114 мм обвязки одной из скважин УКПГ-б ОНГКМ. В области фланца образовалась сквозная трещина, находившаяся на расстоянии 15-23 мм от оси сварного шва. Структура металла фланца в зоне образования и развития трещины состояла из грубопластинчатого перлита. Методами электронной фрактографии установлено, что металл фланца был сильно загрязнен неметаллическими включениями, по которым распространялось разрушение, имевшее преимущественно хрупкий характер. Причиной возникновения этого повреждения явилось наличие в металле фланца большого количества неметаллических включений типа оксисульфидов и непроваров глубиной до 2 мм общей протяженностью около 50 мм в корне сварного шва. Кроме того, отсутствие термообработки сварного соединения способствовало возникновению в околошовной зоне структуры троостита, не обладающей достаточной стойкостью к сероводородному растрескиванию, и высокого уровня остаточных напряжений.  [c.27]

После 18 лет эксплуатации произошло разрушение (длина трещины 280 мм) кольцевого сварного соединения щлейфового трубопровода 0219x12 мм (сталь 12Х1МФ) скважины № 6026 (рис. 8а). В сварном соединении в области очага разрушения обнаружены поры, шлаковые включения, подрезы и непровар до 5 мм (рис. 86), которые инициировали сероводородное растрескивание металла стыка. Аналогичное разрушение сварного стыка шлейфового трубопровода скважины № 183 произошло после 15 лет эксплуатации (рис. 8в). Трещина в сварном шве длиной 210 мм образовалась от непровара глубиной 4 мм. Склонность металла шва к сероводородному растрескиванию обусловлена также его повышенной твердостью (293 НВ), что свидетельствует об отсутствии термообработки стыка.  [c.29]

Рис. 10. Трещины сероводородного растрескивания в металле отвода ДКС-1 (х200) Рис. 10. Трещины сероводородного растрескивания в металле отвода ДКС-1 (х200)
Сероводородное растрескивание отвода 90x114 мм дожимной компрессорной станции (ДКС-1) произошло после 10 лет эксплуатации. Материалом отвода являлась ферритно-перлитная сталь A420WPLG (твердость 120 НВ). Сквозная трещина длиной 90 мм располагалась в нижней части отвода, на участке сгиба, и развивалась по скоплениям неметаллических включений (рис. 10).  [c.35]

Разрушение монтажного сварного стыка 0720x22 мм газопровода неочищенного газа УКПГ-9-ОГПЗ имело место по истечении девяти месяцев эксплуатации. В сварном стыке были отмечены смещение кромок до 7 мм на расстоянии 2/3 периметра трубы и непровар до 10 мм в том же месте. От непровара зародилась коррозионная трещина, которая в ходе своего дальнейшего развития на 20 мм вышла на основной металл при ширине раскрытия кромок до 0,5 мм. Сероводородное растрескивание другого сварного стыка этого же газопровода (рис. 12а) также было обусловлено дефектами сварного соединения смещением кромок (более 2 мм) в сочетании с непроваром в корне шва глубиной более 2 мм на расстоянии 500 мм и порами в корневом шве.  [c.36]


Сероводородное растрескивание монтажного сварного стыка газопровода 0720x17,2 мм УКПГ-16-ОГПЗ произошло ранее чем через месяц после начала его эксплуатации. Трубопровод сооружен из труб импортной поставки (сталь Х46) в соответствии с ТУ-28-40/82 Н25. Очаг разрушения длиной 280 мм находился на металле шва в нижней части трубы. По обе стороны от очага на металле шва наблюдался шевронный узор с выходом в зону термического влияния в верхней ча-  [c.36]

Разрушение отводов и горизонтальных участков СППК обусловлено язвенной коррозией, зарождающейся в местах выхода на поверхность неметаллических включений и вызывающей утонение стенок в 2-5 раз. От этих концентраторов напряжений по основному металлу и сварному шву развивается сероводородное растрескивание. Появлению язвенной коррозии и свищей в сварных швах Г уголка и регулятора уровня способствовали имеющиеся в металле непровары, поры и шлаковые включения.  [c.43]

Примером сероводородного растрескивания деталей газопромыслового оборудования является хрупкое разрушение пластин компенсатора насоса 9МГР на промстоках. Микроструктура металла пластин ферритная с небольшим количеством перлита, твердость составляет 140 НВ, коррозионные трещины развивались по границам зерен. Произошедшее после семи месяцев эксплуатации водородное растрескивание скалки насоса ХТР-1,6/200, который перекачивает ингибитор КИГИК, приготовленный на основе метанола, обусловлено наличием большого количества мартенситной составляющей в приповерхностном слое металла скалки, твердость которого достигает 53 HR .  [c.43]

Межкристаллитное сероводородное растрескивание 3" тройника инициировано технологическим концентратором напряжений, расположенным на внутренней стенке корпуса тройника. Малая толщина стенок и нерациональная технология изготовления обусловили сероводородное растрескивание тройника мета-нольной гребенки. Разрушение патрубков 0115x6 мм из стали ТТ5Т35 в зоне приварки к воротнику произошло вследствие слияния водородных треп-лн, развившихся по неметаллическим включениям вдоль стенки трубы, и их дальнейшего слияния с трещинами, возникшими в результате сероводородного растрескивания металла. Растрескивание патрубков вызвано воздействием неингибированной сероводородсодержащей среды, так как патрубки расположены в застойной зоне сепаратора, а также повышенными растягивающими напряжениями, в том числе от изгибающего момента.  [c.45]

По-видимому, с целью придания металлу корпуса крана в зоне уплотнения и расположения винтов (концентраторов напряжений) антикоррозионных свойств 1аплавка производилась хромистыми электродами ферритного класса. В процессе сварки наплавленного металла с основным металлом корпуса крана вследствие перемешивания содержание хрома в наплавленном слое уменьшилось до 8,5%. Такого содержания хрома недостаточно для получения коррозионностойкой ферритной структуры. В результате в наплавленном слое образовалась мартенситная структура, не обладающая стойкостью против сероводородного растрескивания, что привело в итоге к возникновению трещин в корпусе 6" кранов и к нарушению их герметичности.  [c.47]

При эксплуатации на ОГПЗ б" и 8" кранов французского производства имели место случаи разрушения крепежных винтов, соединявших корпус с переходником. Исследования показали, что разрушение вследствие сероводородного растрескивания происходило лишь в тех случаях, когда материалом винтов являлась высокопрочная низколегированная сталь A320grL-7, и из-за потери герметичности кранов они подвергались воздействию влажной сероводородсодержащей среды.  [c.48]

В апреле 1987 г. на ОГПЗ разрушился трубопровод, сооруженный в 1985 г. из труб фирмы Sumitomo (Япония) 0530 X 12 мм по ТУ 20-28-40-48-79-УР и предназначенный для транспортировки регенерированного очищенного газа. С начала ввода в эксплуатацию и в момент, предшествовавший разрушению, трубопровод находился в резерве (с обоих концов был перекрыт задвижками от действующего оборудования). Тем не менее, из-за негерметичности задвижки со стороны трубопровода неочищенного газа в него проник сероводородсодержащий газ и находился под рабочим давлением до 5,7 МПа. Разрушение трубопровода произошло в результате образования расслоений площадью до 0,8 м (рис. 15) и последующего сероводородного растрескивания внутреннего, а затем и наружного слоев стенки трубы. При разрушении трубопровода в двух местах были повреждены пять колонн эстакады межцеховых коммуникаций и произошло возгорание газа. Газо- и конден-сатопроводы эстакады межцеховых коммуникаций разрушились из-за просадки после сноса колонн с одновременным нагревом в очаге горения газа.  [c.48]

По механическим свойствам металл трубопровода соответствовал требованиям нормативных документов. При испытаниях образцов металла новых труб на водородное расслоение по методике NA E ТМ 0284-96 (база испытаний — 96 ч) в образцах образовывались трещины, характерные для водородного расслоения. С учетом опыта эксплуатации ОНГКМ было сделано заключение, что дефекты, приведшие к разрушению трубопровода регенерированного газа, могут возникнуть в течение 6-8 месяцев даже в трубах, стойких к сероводородному растрескиванию, в отсутствие ингибирования и при наличии  [c.48]

Разрушение трубопровода Покровка-ОГПЗ началось в основном металле нижней части трубы после 13 лет эксплуатации и развивалось в обе стороны от места зарождения на длине 8670 мм. Максимальное раскрытие трещины составило 990 мм. Трубопровод был рассчитан на рабочее давление до 2,0 МПа и сооружен из труб 0530x7 мм. В металле поврежденной трубы обнаружены признаки водородного расслоения и сероводородного растрескивания, что свидетельствует о высокой влажности газа и наличии в нем сероводорода. Установлены также недопу-  [c.60]


Смотреть страницы где упоминается термин Сероводородное растрескивание : [c.13]    [c.19]    [c.20]    [c.22]    [c.23]    [c.25]    [c.31]    [c.36]    [c.41]    [c.42]    [c.43]    [c.52]   
Структура коррозия металлов и сплавов (1989) -- [ c.0 ]



ПОИСК



Растрескивание



© 2025 Mash-xxl.info Реклама на сайте