Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные агрегаты гидравлической системы

Основные агрегаты гидравлической системы  [c.173]

Загрязнения, содержащиеся в рабочей жидкости, состоят, в основном, из продуктов износа деталей агрегатов гидравлической системы, продуктов окисления жидкости и посторонних частиц, попадающих извне (через зазоры уплотнении, дренажные отверстия и др.). Часть этих загрязнителей растворяется в жидкости, а другая — находится во взвешенном состоянии.  [c.84]


Гидравлические фильтры — защитные агрегаты гидравлической системы, предназначенные для очистки рабочей жидкости от мельчайших посторонних частиц и грязи, присутствие которых может привести к отказу всей системы или ее отдельных агрегатов. Основные технические данные фильтров приведены в табл. 4.19, а возможные неисправности — в табл. 4.20.  [c.179]

В созданных и конструируемых горных машинах и агрегатах, особенно автоматизированных, широко применяют гидравлические системы, гидравлические приводы, основными отличительными особенностями которых являются развиваемые большие усилия и мощности при малых габаритах, податливость, простота и тонкость регулирования, защита от перегрузок, высокая надежность.  [c.3]

Износ систем и агрегатов Во многих сложных машинах можно выделить отдельные системы и агрегаты, работоспособность которых в основном зависит от их износа и в меньшей степени от влияния других узлов и механизмов машины. Износ таких систем и агрегатов и его влияние на выходные параметры целесообразно изучать самостоятельно, но учитывать воздействия на данную систему других агрегатов машины, которые для нее играют роль окружающей среды. Взаимодействие и влияние износа отдельных пар трения рассматривается в пределах данной системы или агрегата. Примером таких узлов могут служить гидравлические системы и агрегаты машин [82, 107]. Износ элементов гидросистемы— насосов, распределительных пар, уплотнений, силовых цилиндров, поршней—непосредственно сказывается на выходных параметрах системы — точности передачи движения или управляющего воздействия, КПД, передаваемых нагрузках и др. Износ других элементов машины скажется в основном на силовых и тепловых нагрузках в гидросистеме, но не повлияет на изменение ее внутреннего состояния. Целесообразно также самостоятельно изучать износ пневматических систем, систем управления, систем подачи топлива, смазки, охлаждения, тормозных систем [39 ], и др. Сказанное можно отнести и ко многим агрегатам машины — двигателю и его системам, приводным коробкам передач,  [c.368]

Автоматическое регулирование тесно связано и взаимодействует с электрической системой дистанционного управления и защиты агрегата. На ГТУ широкое распространение получила гидравлическая система регулирования, основными элементами которой являются командующий орган, или регулятор, который при изменении регулируемого параметра дает соответствующий импульс, т. е. меняет давление проточного масла, регулирующий орган, выполненный в виде газораспределителя, т. е. регулирующего клапана, и исполнительный орган — связующее звено между командующим и регулирующим органами автоматического регулирования. Для разгрузки регуляторов и уменьшения их габаритных размеров командующий орган в современных турбинах воздействует на регулирующие клапаны через специальный масляный серводвигатель.  [c.235]


Рассмотрим некоторые основные вопросы, связанные с расчетом надежности системы. При оценке надежности гидравлической системы различные агрегаты рассматриваются как элементы сложной системы.  [c.31]

Воздушная система по своему принципу работы одинакова с гидравлической системой и отличается от нее родом рабочего тела, под воздействием которого происходит работа агрегатов. Поэтому основные положения по уходу за воздушной и гидравлической системами во многом сходные.  [c.183]

Рабочее оборудование 1 присоединено к передней полураме 12 посредством портала 2. Задняя 5 и передняя 12 полурамы соединены друг с другом соосными вертикальными шкворнями 9 и 10, обеспечивающими взаимные повороты в плане полурам. друг относительного друга. Эти повороты осуществляются при помощи двух рулевых гидроцилиндров (на рис. 81, а не показаны), приводимых от гидравлической рулевой системы и управляемых посредством обычного рулевого колеса. Последнее установлено перед сиденьем 3 водителя, размещенным на задней полураме 5 перед двигателем 4 и над коробкой передач 8. Размещение сиденья 3 в непосредственной близости от двигателя к коробки передач и на одной с ними полураме обусловливает простоту механизмов управления, соединяющих эти два основных агрегата с рабочим местом водителя.  [c.163]

Насосы 1 подают жидкость из бака 2 в гидросистему и к аккумулятору давления 4. Прп нормальном торможении тормоза включаются при помощи клапана 3. При нажатии на педали жидкость из основной гидросистемы самолета или аккумулятора 4 через клапан 3 направляется к клапанам-переключателям 5 и далее к тормозам 6 дискового типа, производя торможение. Система позволяет осуществлять как общее, так и раздельное торможение правого и левого колес. При растормаживании жидкость, вытесняемая из тормозных цилиндров 6, отводится через клапан 3 в бак. Аккумулятор 4 снабжен предохранительным клапаном 7. Клапан 3 состоит из двух одинаковых агрегатов, помещенных в одном корпусе. Управление тормозами, кроме гидравлической системы, имеет еще одну независимую систему — аварийную пневматическую. При повороте рукоятки 8 сжатый воздух из резервуара 9 через клапан 10 поступает к переключателям 5 и, отключив гидромагистраль, поступает в цилиндры тормозов 6, осуществляя торможение. При растормаживании воздух по тем же трубопроводам через клапан 10 выходит в атмосферу.  [c.521]

Гидравлическая характеристика системы. Мы рассмотрели гидравлические характеристики элементов, входящих в произвольную пневматическую или гидравлическую систему двигательной установки. В некоторых случаях, в основном при разработке эскизного проекта, целесообразно составление пневмогидравлической характеристики на систему, включающую в себя значительное количество различных элементов (трубопроводов, агрегатов, переходных узлов и др.). Обычно в качестве такой системы принимаются участки, заключенные между основными агрегатами  [c.309]

Монтаж гидравлической системы. Схема гидравлической системы автопилота зависит от типа самолета и обычно выполняется в двух основных вариантах гидросистема, обслуживающая только автопилот (см. фиг. 390), и гидросистема, обслуживающая, кроме автопилота, другие агрегаты самолета (выпуск шасси, закрылков, тормоза и т. д.).  [c.483]

Ранее изложены методы формирования математических моделей основных агрегатов ЖРД (жидкостных и газовых трактов, ТНА) с учетом и без учета акустических эффектов (для гидравлических и газовых трактов) и крутильных колебаний вала ТНА. Из моделей отдельных агрегатов можно сформировать математическую модель ЖРД. В обобщенную схему ЖРД (см. рис. 1.1) без системы регулирования входят четыре гидравлических тракта и три газовых тракта ТНА. Упрощенная математическая модель ЖРД без регуляторов (без учета акустических эффектов и крутильных колебаний вала ТНА) содержит десять линейных дифференциальных или алгебраических уравнений. При анализе динамики ЖРД с регуляторами число уравнений, входящих в модель, увеличивается. Если подставить во все уравнения частные периодические решения  [c.243]


Система маслоснабжения ГТУ предназначена для обеспечения смазки подшипников агрегата, создания гидравлических герметичных уплотнений нагнетателя, а также для гидравлического управления й регулирования установки. В системе маслоснабжения ГТУ в основном применяется турбинное масло марки 22 (Л).  [c.231]

В течение последнего времени вопросам монтажа гидравлических и пневматических систем, компоновке ее агрегатов на изделиях уделяют самое серьезное внимание, так как надежность и долговечность пневмогидравлической системы находится в прямой связи с точностью изготовления деталей трубопроводов по длине и конфигурации и с технологией выполнения монтажных работ. Даже самые незначительные отклонения трубопроводов от заданных размеров и формы создают в итоге неточности, приводящие при монтаже на машине к появлению значительных по величине напряжений. Монтажные напряжения являются одной из основных причин преждевременного выхода трубопроводов из строя и отказа пневмогидравлической системы. Величина их в отдельных случаях может превышать предел текучести материала, из которого они изготовлены. Так, неправильный выбор расстояния между колодками крепления может привести к возникновению опасных резонансных колебаний отдельных участков трубопроводов и, как следствие, к его усталостным напряжениям.  [c.22]

Вторую группу объектов, для которых проблема прогнозирования индивидуального остаточного ресурса стала актуальной, составляют крупные энергетические установки. Это тепловые, гидравлические и атомные электростанции, большие системы для передачи и распределения энергии и топлива (например, магистральные трубопроводы большой протяженности). Будучи сложными и ответственными техническими объектами, они содержат напряженные узлы и агрегаты, которые при аварии могут стать источником повышенной опасности для людей и окружающей среды. Ряд тепловых электростанций, построенных в послевоенные годы, был рассчитан на срок службы 25—30 лет. Таким образом, к настоящему времени они выработали свой расчетный ресурс. Поскольку оборудование электростанций находится в удовлетворительном техническом состоянии и они продолжают вносить существенный вклад в энергетику страны, возникает вопрос о возможности дальнейшей эксплуатации без перерывов на реконструкцию основных блоков и агрегатов. Для вынесения обоснованных решений необходимо иметь достаточную информацию о нагруженности основных и наиболее напряженных элементов в течение всего предыдущего периода эксплуатации, а также об эволюции технического состояния этих элементов. При создании новых энергетических установок, среди которых особое значение имеют атомные электростанции, необходимо предусматривать их оснащение не только системами раннего предупреждения отказов, но 10  [c.10]

Значительно меньшее распространение на современных самосвалах имеют рычажно-балансирные гидравлические подъемные механизмы. В этом случае усилие от гидроцилиндра на платформу передается не непосредственно, как в первых двух схемах, а через систему рычагов. Основной недостаток такого подъемного механизма заложен в его структурной схеме — наличие параллельных осей и разобщенных подшипников затрудняет сборку, вызывает заедания при перекосах конструкции во время работы, повышенные трение и износ подшипников. Кроме того, такое устройство имеет большие трудоемкость и металлоемкость и может быть применено только для разгрузки назад. Преимуществом является то, что рычажная система передачи усилия от гидроцилиндра препятствует скручиванию платформы при разгрузке в том случае, когда груз размещен неравномерно и центр тяжести груза смещен в сторону от продольной оси симметрии. Это весьма существенно, если платформа имеет большую длину и недостаточную собственную жесткость на кручение. При такой схеме гидроцилиндр располагают горизонтально. Это бывает целесообразным по условиям общей компоновки автомобиля-самосвала, например, когда для переднего расположения гидроцилиндра нет места, а расположению его под платформой мешают поперечины рамы, карданный вал, редуктор заднего моста и другие агрегаты шасси.  [c.24]

Рабочие циклы металлорежущих станков автоматизируются с помощью системы выключающих и переключающих упоров и других дополнительных устройств, в частности, следящих систем, в основном гидравлического типа, которые в результате ряда усовершенствований превратились в надежные автоматические агрегаты.  [c.128]

На рис. 564 показана схема системы непрямого регулирования. Эта система имеет те же основные элементы, что и в принципиальной схеме автоматического регулирования (рис. 562), но перемещение регулируемого органа 4 (заслонки) происходит посредством гидравлических сервомоторов. Пусть, например, угловая скорость о)1 звена приведения машинного агрегата увеличилась. Тогда муфта N начнет подниматься и через систему рычагов поднимет золотник 5. В цилиндр 6 золотника по трубкам 7 и 5 нагнетается масло под постоянным давлением. При равновесном режиме маслопроводы 10 и 11 перекрыты золотником 5. При подъеме золотника 5 масло по трубопроводам 8 и 6 начнет поступать в нижнюю полость цилиндра 12 сервомотора, и поршень 13 переместится вверх и системой рычагов опустит заслонку 4, уменьшая доступ движущей энергии Л/д. При движении поршня 13 вверх масло, находящееся в верхней полости цилиндра 12, по трубопроводу 10 и маслопроводу 9 вытесняется в приемник масла. После того как заслонка 4 опустится, угловая скорость о)1 уменьшится, муфта N начнет опускаться вниз, золотник 5 перекроет трубопроводы 6 VI 10 ш доступ масла в цилиндр 12 сервомотора прекратится. После возвращения золотника  [c.520]

Конструкция экскаватора ЭО-3332 унифицирована по многим узлам и агрегатам с экскаватором ЭО-3322. Эти машины включают в себя одинаковую силовую установку, устройство которой описано в 20. Поворотные платформы обоих экскаваторов установлены на одной и той же ходовой тележке. Общими являются также элементы гидроаппаратуры и системы пневмоуправления (см. 21—25, 31). Основное отличие этих машин состоит в назначении и устройстве рабочего оборудования и связанного с этим изменения отдельных узлов системы гидравлического привода.  [c.257]


Ковочные комплексы. В настоящее время основное направление развития автоматизации процессов ковки— создание автоматизированных комплексов ковочный пресс — манипулятор . В современных ковочных комплексах используют главным образом гидравлические ковочные прессы с нижним маслонасосным приводом. Такой пресс оснащается дополнительным поперечным столом и магазином с комплектом бойков, в которые входят плоские бойки, вырезные бойки, комбинированные бойки и отрезной нож, заменяющий накладные топоры (рис. 414). Ковочный пресс обслуживается одним или двумя специализированными манипуляторами. Управление всеми агрегатами осуществляется от единой системы управления, с помощью которой комплекс работает в следующих режимах ручном, полуавтоматическом, автоматическом и программном. Программное управление организуется либо с помощью системы ЧПУ, либо от управляющей ЭВМ.  [c.164]

Во втором издании книга подвергалась существенной переработке. Исключены главы Некоторые сведения из теории автоматического регулирования и Некоторые нелинейные задачи динамики ЖРД . Полностью переработаны главы, посвященные гидравлическим и газовым трактам, методам расчета и особенностям динамических характеристик ЖРД. Основное внимание во втором издании книги уделено формированию математических моделей отдельных агрегатов ЖРД и ЖРД в целом, так как именно достаточно точные модели объекта регулирования позволяют правильно выбрать структуру и параметры системы автоматического регулирования (САР). В отличие от первого издания во втором издании показаны методы формирования математических моделей гидравлических и газовых трактов для двух диапазонов частот— для низких частот, когда эти элементы ЖРД можно рассматривать как объекты с сосредоточенными параметрами, и для высоких частот, когда необходимо учитывать волновые процессы.  [c.3]

Казалось бы, проще всего описать динамику гидромеханических устройств ЖРД—турбонасосных агрегатов (ТНА), гидромеханических регуляторов. Действительно, в первом приближении для ТНА записывается простейшее уравнение апериодического звена первого порядка. Несколько сложнее модель ТНА с учетом крутильных колебаний вала. В этом случае его можно представить в виде двух независимо вращающихся масс, связанных упругим элементом (например, рессорой). Также усложняет модель ТНА учет инерции жидкости -в проточных частях насосов. Очень сложна модель с учетом кавитационных явлений на, входах в насосы. При этом следует отметить, что в основном идет речь не о развитых кавитационных режимах, при которых падает перепад давлений, создаваемый насосом, а о скрытой местной кавитации, не сказывающейся на статических характеристиках насоса. Местная кавитация на входе в насос влияет на динамические характеристики насоса и гидравлического тракта перед насосом снижается частота собственных колебаний тракта, увеличивается коэффициент усиления насоса. Оба эти фактора существенно сказываются на продольной устойчивости ракеты в полете, так как именно резонансная частота гидравлического тракта и коэффициент усиления ЖРД в первую очередь и определяют устойчивость системы [12, 20]. Коэффициент усиления насоса (а также и ЖРД)—это отношение амплитуды колебаний давления на выходе из насоса (в камере) к амплитуде колебаний давления на входе в насос.  [c.10]

С помощью системы настройки частично компенсируются ощибки производства, неизбежные при изготовлении узлов и агрегатов ЖРД. В систему настройки входят дроссельные устройства, устанавливаемые в разных сечениях газовых или гидравлических трактов. Изменение гидравлического сопротивления дросселей настройки в процессе проливок агрегатов, а также при специальных технологических испытаниях ЖРД позволяет так подобрать их характеристики, чтобы до минимума уменьшить отклонения основных параметров—давления 16  [c.16]

Пневмогидравлическая схема (ПГС) ЖРД отображает взаимные связи между отдельными конструктивными элементами ЖРД, осуществляемые с помощью гидравлических или газовых трактов. Существует большое число различных вариантов ПГС ЖРД, отличающихся как по принципу работы, так и по составу агрегатов с вытеснительной (баллонной) или насосной системой питания, с одним или двумя основными ТНА, с бустерными насосными агрегатами (БНА) или без них, с одним или несколькими газогенераторами, с одной или с несколькими камерами сгорания и т. д.  [c.22]

Электронная (аналоговая) система регулирования включает панель управления агрегатами гидравлической системы (МНС, гидравлических блоков), аналоговые регуляторы мод. 406.11 и 450, оснащенные нормирующими преобразователями постоянного (для динамометров) и переменного (для датчиков хода поршня) тока, блок защиты по перегрузке, селектор обратной связи. Регулятор мод. 406.11 широко используют в испытательных системах фирмы MTS, в частности, для простых испытательных машин ерии 812. Регулятор мод. 450 исйользуют в основном в мало- и многоканальных системах. В этом регуляторе дополнительно предусмотрены модули оперативного контроля с помощью цифрового вольтметра.  [c.58]

Любая гидравлическая система, независимо от ее назначения, содержит следующие основные узлы источники давления, куда входят бак, насосы, гидропневматические аккумуляторы и некоторые вспомогательные агрегаты распределительные и регулирующие устройства, включающие командные агрегаты, управляющие и регулирующие устройства потребители, включающие агрегаты, преобразующие энергию рабочей жидкости в механическую энергию трубопроводы и соединительную аппаратуру.  [c.74]

Ввиду этого основны.м при испытании на надежность и срок службы является исследование рел<имов нагрузки агрегатов и оценка характеристик их выносливости. На работу гидравлической системы и ее агрегатов влияет большое число различных факторов. Влияние одних факторов легко учитывается при оценке действующих на агрегат или его узлы нагрузок (например, рабочее давление, температура) влияние других не может быть строго учтено из-за их стохастической природы (воздушные нагрузки, колебание скорости, влажность и т. д.). Все это создает неопределенность в учете внешних воздействий и придает задаче статистический характер. Напряжения, возникающие при этом в элементах конструкции агрегатов, будут являться случайной величиной.  [c.147]

На фиг. 68 показана гидравлическая система электрокара с подъемной платформой МЕ. Основной агрегат системы расположен рядом с подножкой водителя и состоит из электродвигателя закрытого типа (как правило, с ком-паундиой обмоткой), соединенного с ним шестеренчатого насоса высокого давления и бачка с маслом, конструктивно объединенных в одно компактное целое. Пусковое реле электродвигателя размеидено на его верхнем подшипниковом щите и включается расположенной там кнопкой. Насос подает масло из масляного бачка к двум укрепленным на раме гидравлическим цилиндрам, правому и левому. Под действием гидравлического давления поршни цилиндров приводятся в движение и при помощи системы штоков и рычагов  [c.892]


По общему правилу, двигательные основания, образующие составную часть машины, предназначенной для перегрузочных, траншеекопательных и подобных работ, можно отличить от тракторов данной позиции по их конструктивным особенностям (форма, шасси, средства передвижения и т.д.). Что касается двигательных оснований тракторного типа, необходимо принимать во внимание различные технические особенности, относящиеся в основном к конструкции агрегата в сборе и к оборудованию, специально рассчитанному на выполнение иных функций, нежели буксирование или толкание. Например, двигательные основания, не входящие в данную товарную позицию, включают в свой состав прочные элементы (такие, как подпорки, плиты или балки, платформы для поворотных кранов), которые либо являются частью сборки шасси-кузовов, либо закрепляются на них, как правило сваркой, для установки на них оборудования, приводящего в действие рабочие орудия. Кроме того, такие двигательные основания могут включать в себя некоторые из нижеперечисленных стандартных элементов мощное оборудование с встроенной гидравлической системой, служащее приводом рабочих орудий специальные коробки передач, в которых, например, максимальная скорость задней передачи не меньше, чем максимальная скорость передней передачи гидравлическая муфта и гидротрансформатор противовес уравновешивания удлиненные гусеницы для увеличения устойчивости агрегата специальная рама для установки двигателя сзади и т.д.  [c.38]

Гидравлическая система вертолета состоит из основной и дублирующей. Они предназначены для подачи рабочей жидкости к гидроусилителям, установленным в цепях управления вертолета, и для уборки и выпуска шасси. Основная система обеспечивает работу гидроцилиндра расстопоривания фрикциона ручки шаг — газ . Переход на работу агрегатов от дублирующей системы осуществляется автоматически.  [c.232]

Основной текст книги содержит методику гидравлического расчета котельных агрегатов и обобщает материал теоретических и экспериментальных исследований температурных н гидравлических режимов трубной системы агрегатов любых производительностей нй давление свыше 10 кгс/см , включая и сверхкритнческое.  [c.2]

Гоиливные насосы подкачки создают напор, необходимый для преодоления гидравлического сопротивления в трубопроводах и агрегатах системы топливопитания двигателя, расположенных до основных топливных насосов, а также для предотвращения явления кавитации на входе в основные насосы. Насосы подкачки, устанавливаемые в топливных баках самолета, обычно снабжаются автономными электроприводами. Кроме того, на двигателе с приводом от ротора двигателя предусматриваются дополнительные насосы подкачки. Обычно насосы подкачки выполняются центробежными, реже — шестеренчатыми.  [c.275]

Рабочая, окружающая и разделительная среды. Рабочая среда (F) — вещество внутри, окружающая среда А) - вещество вне герметизируемого объекта. Каждая среда характеризуется определенным агрегатным состоянием основной фазы (жидкое, газообразное, твердое — сыпучее, плазменное), физическими параметрами и химическими свойствами. Обычно в основной фазе находятся загрязнения, поэтому система всегда является двух- или трехфазной (например, в жидкости взвешены твердые частицы и пузырьки газа). Среду, состоящую из предусмотренной смеси нескольких веществ в разных состояниях (например, мелкодисперсные ферромагнитные частицы в жидкости, коллоидные растворы и т. д.), называют композиционной. При взаимодействии сред между собою и- с материалами уплотнения возможны недопустимые химические реакции, изменение физического состояния и т. п. В этом случае среда Р является несовместимой со средой Л или материалами уплотнений. Пригодность материалов для работы в условиях взаимного контакта называют совместимостью. В течение заданного срока эксплуатации свойства материалов должны изменяться (вследствие взаимодействия со средами) в установленных пределах. При несовместимости сред А и Р в конструкции агрегата предусматривают гидравлический или газовый затвор, заполненный разделительной средой Б (иногда ее н ывают запирающей или буферной средой). В уплотнениях некоторых типов разделительная среда может находиться в разных агрегатных состояниях при работе и остановке объекта (например, в гидрозатворах с легкоплавким уплотнителем).  [c.13]

Следует отметить, что особенностью гидроопор с инерционными трансформаторами является независимость частот внутренних резонансов автономной гидроопоры от динамических свойств присоединенных конструкций. Резонансные частоты автономной гидроопоры в составе полной системы переходят в нули передаточных функций (без учета диссипации). Это свойство имеет важное практическое значение, так как позволяет переносить экспериментальные результаты изучения автономной гидроопоры на систему в целом. Вертикальная жесткость резиновой конической обечайки определяется как жесткость эквивалентной конструкционной пружины, к которой через поршневое действие резиновой конической поверхности обечайки подсоединяется эквивалентная гидравлическая пружина. В ряде работ, посвященных гашению вибраций гидроопорой силового агрегата транспортного средства, одним из основных факторов, влияющих на демпфирование в области резонансных частот, является инерционность столба рабочей жидкости, заключенной в дроссельном канале. При использовании магнитореологических заполнителей возрастает влияние факторов внутреннего трения, так как при дросселировании в каналах нарушается ламинарный поток. С одной стороны, такие факторы облегчают настройку гидроопоры на частоту нуля передаточной функции, а с  [c.102]

ЖРД с дожиганием топлива по сравнению с ЖРД без дожигания характеризую гея более глубокими взаимными связями между параметрами агрегатов и систем. Поагрегатный расчет с последующей стыковкой параметров агрегатов в схеме двигателя, применяемый при проектировании ЖРД без дожигания, требует для ЖРД с дожиганием большого числа последовательных приближений, что в значительной степени осложняет процесс проектирования двигателя. Выбор и расчет параметров ЖРД с дожиганием топлива выполняются на основании уравнения энергетического баланса. Под уравнением энергетического баланса понимается уравнение, характеризующее равенство потребляемых и располагаемых мощностей в системе подачи. Это уравнение включает в себя все основные параметры двигателя (давление в камере сгорания, температуру и перепад давления газа на турбине, гидравлические сопротивления охлаждающих трактов и элементов смесеобразования) и отражает влияние различных способов регулирования на эти параметры.  [c.311]

Гидравлические магистрали ЖРД являются основными элементами, связывающими между собой узлы и агрегаты ЖРД, - газовые емкости (КС, ГГ газовод), агрегаты подачи компонентов топлива, регулирующие агрегаты двигателя, стендовые или ракетные баки с двигателем и т. д. Параметры (давление, расход, температура компонентов топлива) на входе и выходе из гидромагистралей одновременно служат входными и выходными параметрами для узлов и агрегатов ЖРД. В замкнутой системе возмущения в гидромагистрали действуют одновременно с обеих концов.  [c.35]

Для повышения антикавитационных качеств системы питания ЖРД используются бустерные (вспомогательные) насосные агрегаты. Бустерный насос устанавливается перед основным шнекоцентробежным насосом ТНА двигателя и имеет меньшую угловую скорость вращения ротора. Бустерный насос работает при низких давлениях наддува баков ракег-носигелей и обеспечиваег давление, необходимое для бессрывной работы основного насоса. Применение БНА позволяет увеличить угловую скорость ротора ТНА и уменьшить массу последнего. В качестве бустерных насосов используются в основном осевые лопаточные насосы. Привод лопаточных бустерных насосов осуществляется от газовой или гидравлической турбины активного типа. Возможно применение в качестве бустерного насоса - струйного насоса (эжектора).  [c.94]

Исполнительные механизмы с электромеханическим или электромагнитным приводом вследствие их неудовлетворительных мае совых показателей применяются в основном для воздействия на такие агрегаты, управление которыми не требует создания боль ших усилий в приводе. Эти исполнительные механизмы, в част -ности, могут быть использованы для управления узлами топливо -подачи двигателей (например, дроссельной заслонкой карбюратора). Они также конкурентоспособны с исполнительными механизмами, имеющими пневматический или гидравлический привод, в системах переключения передач легковых автомобилей особо малого и малого классов. Наличие электромеханического привода в исполнительном механизме предопределяет и сис тему управле ния им, которую выполняют с электромагнитным, электрическими и электронными элементами автоматики.  [c.4]


Закрепление заготовок может осуществляться посредством ручных зажимов или гидравлических зажимных устройств с механо- или пневмогидрав-лическими приводами. Опоры (основные и вспомогательные) и зажимные устройства гибкой системы выполняются в виде отдельных компактных агрегатов (модулей), которые компонуются на плитах с сеткой координатно-фиксирующих. п крепежных отверстий. Расстояние между базирующими отверстиями нз палетах равно 50 мм. Переналадка приспособлений осуществляется за счет смены или перекомпоновки агрегатированных установочных и зажимных устройств во время работы станка. На рис. И5 показано приспособление, скомпонованное из элементов системы FBS. В табл. 19 приведены базирующие и зажимные устройства гибкой модульной системы FBS.  [c.128]


Смотреть страницы где упоминается термин Основные агрегаты гидравлической системы : [c.131]    [c.16]    [c.256]    [c.393]    [c.31]   
Смотреть главы в:

Справочник авиационного инженера  -> Основные агрегаты гидравлической системы



ПОИСК



Агрегат основной

Гидравлический агрегат

Система гидравлическая

Система основная



© 2025 Mash-xxl.info Реклама на сайте