Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрегатное состояние

Во всех веществах теплота передается теплопроводностью за счет переноса энергии микрочастицами. Молекулы, атомы, электроны и другие микрочастицы, из которых состоит вещество, движутся со скоростями, пропорциональными их температуре. За счет взаимодействия друг с другом быстродвижущиеся микрочастицы отдают свою энергию более медленным, перенося таким образом теплоту из зоны с высокой в зону с более низкой температурой. В теории теплообмена, как и в гидромеханике, термином жидкость обозначается любая сплошная среда, обладающая свойством текучести. Подразделение на капельную жидкость и газ используется только в случае, когда агрегатное состояние ве-  [c.69]


ТЕПЛООТДАЧА ПРИ ИЗМЕНЕНИИ АГРЕГАТНОГО СОСТОЯНИЯ ВЕЩЕСТВА  [c.87]

Теплообменный аппарат (теплообменник) — это устройство, предназначенное для нагревания, охлаждения или для изменения агрегатного состояния теплоносителя. Чаще всего в теплообменных аппаратах осуществляется передача теплоты от одного теплоносителя к другому, т. е. нагревание одного теплоносителя происходит за счет охлаждения другого. Исключение составляют теплообменники с внутренними тепловыделениями, в которых теплота выделяется в самом аппарате и идет на нагрев теплоносителя. Это разного рода электронагреватели и реакторы.  [c.103]

В теплообменниках с промежуточным теплоносителем теплота от греющей среды к нагреваемой переносится потоком мелкодисперсного материала или жидкости. В ряде случаев промежуточный теплоноситель при работе меняет агрегатное состояние.  [c.105]

Для всех других веществ теплоемкость изменяется в некоторых пределах с температурой. Характер изменения зависит от агрегатного состояния вещества и сложности молекулы. В среднем интервале температур у большинства жидкостей и твердых тел, а также у некоторых двухатомных идеальных газов теплоемкость возрастает линейно с температурой согласно соотношению  [c.49]

Тремя различными фазами или агрегатными состояниями вещества считаются твердое, жидкое и газообразное. Конкретная фаза, в которой данная масса вещества действительно существует, определяется общим количеством энергии, которым обладает система. Для данной массы вещества твердая фаза содержит минимальное количество внутренней энергии, а газовая фаза — максимальное внутренняя энергия жидкой фазы занимает промежуточное место между энергиями твердой и газовой фаз.  [c.59]

Любое вещество, как известно, может находиться в трех агрегатных состояниях газообразном, жидком и твердом. В чистых металлах при определенных температурах происходит изменение агрегатного состояния твердое состояние сменяется жидким при температуре плавления, жидкое состояние переходит в газообразное при температуре кипения. Температуры перехода зависят от давления (см. рис. 2), но при постоянном давлении они вполне определенны. Температуры перехода наиболее распространенных в технике металлов для давления I ат приведены в табл. 8.  [c.42]

Температуру в данном случае можно изменять, не изменяя агрегатного состояния. В момент кристаллизации / = 2 (две фазы— твердая и жидкая), = k—= l—2+1 = 0. Это значит, что две фазы находятся в равновесии при строго определенной температуре (температуре плавления), и она е может быть изменена до тех пор, ПО ка одна из фаз не пропадет, т. е. система не станет моно вариантной (с=1).  [c.112]


Агрегатное состояние в нормальных условиях Жидкость Г аз г аз г аз Жидкость  [c.56]

На скорость атмосферной коррозии металлов оказывают также влияние резкие температурные колебания. Резкое повышение коррозионной агрессивности при переходе от отрицательных к положительным температурам объясняется повышением скорости электрохимических процессов в связи с переходом пленки влаги на поверхности металла из твердого агрегатного состояния в жидкое.  [c.181]

Известны три состояния, в которых могут находиться все вещества твердое, жидкое н газообразное. При определенных температурах происходит изменение агрегатного состояния чистых металлов при нагреве выше температуры плавления (Тпл) твердое состояние сменяется жидким, а при нагреве выше температуры кипения жидкое состояние сменяется газообразным. Эти температуры существенно зависят от давления, при котором осуществляется переход одного состояния в другое в условиях неизменного давления температурные параметры постоянны. Главным признаком твердого состояния является кристаллическое строение, а жидкое состояние характеризуется расплавом с хаотическим тепловым движением атомов и молекул металла.  [c.21]

Как указывалось ранее, фазой называют однородную по химическому составу и агрегатному состоянию часть системы, имеющую границу раздела с другими фазами. Так, жидкий раствор является однофазной, а механическая смесь двух компонентов—двухфазной системой.  [c.37]

Ко второй группе относятся среды, изменяющие при охлаждении свое агрегатное состояние в связи с кипением.  [c.124]

Более простым и наглядным, но менее точным, является графический метод расчета процессов по г 5-диаграмме водяного пара. Он пригоден для всех процессов как в области насыщенных, так и перегретых паров. Этот метод позволяет следить за изменением агрегатного состояния пара в любом процессе, не прибегая к формулам. Чисто графический метод расчета процессов применяется для контроля правильности хода решения задач с помощью таблиц.  [c.190]

До сих пор изучались процессы, в которых рабочее тело не меняло своего агрегатного состояния. В данной же главе будут рассматриваться процессы кипения и конденсации, которые сопровождаются изменением агрегатного состояния рабочего тела.  [c.450]

Не наблюдается изменения агрегатного состояния или существенного скачка других термодинамических характеристик медноникелевых сплавов с содержанием меди 60—70 %, хотя известно, что незаполненная d-оболочка способствует хемосорбции на любом металле [551.  [c.97]

Величина вылетающего потока определяется лишь температурой. Поэтому равновесная плотность частиц в паре и создаваемое ими равновесное давление не будут меняться при изотермическом увеличении объема системы. Но полная масса пара будет, конечно, при этом увеличиваться, а масса тела —уменьшаться. Иначе говоря, тело будет возгоняться. При уменьшении же объема часть пара будет, наоборот, конденсироваться. В обоих случаях говорят, что в системе происходит фазовый переход или фазовое превращение, потому что различные агрегатные состояния вещества называют его фазами.  [c.120]

При малых значениях Т интенсивность излучения зависит от Еа, т. е. от суммы дипольных моментов. С увеличением Т интенсивность падает, так как уменьшается второе слагаемое, стоящее в скобках. Когда кТ станет равным Еа, интенсивность стабилизируется и уменьшение излучательной способности прекратится. Дальнейшее возрастание температуры повлечет за собой изменение агрегатного состояния вещества, и поэтому нужно рассматривать излучательную способность нового состояния.  [c.70]

Дисперсными будем считать гетерогенные системы, состоящие из псевдосплошной дисперсионной среды (компонентов, фаз) и дискретной дисперсной среды (компонентов, фаз), отделенных друг от друга развитой поверхностью раздела. Компоненты—химически индивидуальные вещества, а фазы — однородные части системы, находящиеся в различном агрегатном состоянии. Подчеркнем, что дисперсионная среда — псевдо-сплошная вследствие макроразрывов ее непрерывности дисперсными частицами, а дисперсная среда — макро-дискретная (dis retus — разделенный, прерывистый).  [c.9]


Всякое вещество может находиться в трех агрегатных состояниях— пвердом, жидком и газообразном .  [c.20]

При высоких температурах (десятки тысяч градусов и выше), гязооб разное веш,ество переходит в состояние плазмы, характеризующейся развити см процессов ионизации, вплоть до полного разрушения электронной оболочки атомов. Однако было бы неправильно рассматривать плазму как четвертое агрегатное состояние вещества, что, кстати, довольно часто делается. Если бы эго было так, то переход вещества в плазменное состояние протекал бы до конца при постоянных (равновесных) температуре и давлении согласно правилу фаз (см. ниже гл. V, п. 1) для однокомпонентных систем, что не наблюдается в действительности.  [c.20]

Если система однокомпонентна, то диаграмма состояния будет иметь одно измерение (шкала температур), и соответствующие Т0Ч1КИ на прямой покажут равновесную температуру изменения агрегатного состояния (рис. 86).  [c.112]

Как было отмечено (гл. II), переход из одного агрегатного состояния в другое, например из жидкого состояния в твердое, вызван тем, что при из- менившихся условиях новое состояние оказывается более устойчивым, обладает меньшим запасом свободной энергии. Ниже температуры Г (см. рис. 25) устойчивым является кристалл и ниже этой температуры протекает процесс кристаллизации, так как это сопровождается уменьшением свободной энергии.  [c.204]

Для металлов с пониженной свариваемостью характерно образование горячих или холодных трещин в шве и з. т. в. (рис. 5.48). Причины возникновения трещин снижение прочности и пластичности как в процессе формирования сварного соединения, так и в по-слесварочный период вследствие особенностей агрегатного состояния, полиморфных превращений и насыщения газами развитие сварочных деформаций и напряжений, вызывающих разрушение металла, если они превышают его пластичность и прочность.  [c.229]

Преимущества газовых топлив для автомобильного транспорта — одинаковое агрегатное состояние топлива и воздуха, узкий компонентный состав, легкость обеспечения гомогенности смеси, что не требует переобогащения смеси на режиме холостого хода и исключает попадание в цилиндры жидкого топлива равномерность распределения смеси по цилиндрам более широкие пределы воспламеняемости смеси, больший индикаторный КПД при более высоких а меньшая скорость сгорания по сравнению с бензином меньшие Т ах и выбросы N0 . Все это обеспечивает более низкий уровень выбросов при испытаниях автомобилей. Выбросы СО снижаются в 3. .. 5 раз, углеводородов и окислов азота — до полутора раз (обеднение смеси снижает СО, лучшее распределение по цилинд-  [c.54]

Правило отрезков иримеиимо не только к кристаллизующимся сплавам, но и вообще ко всем двухфазным системам ие.записимо от их агрегатного состояния.  [c.92]

Уравнение Клапейрона — Клаузиуса применимо ко всяким изменениям агрегатного состояния химически однородных неществ к плавлению и испарению твердых тел, превращению веществ из одного твердого состояния в другое, к образованию и плавлению кристаллов, к определению изменения удельного объема в процессе парообразования, к определению полной теплоты парообразюванля.  [c.180]

Одним из радикальных направлений повышения надежности и экономической эффективности технологического бборудования является высокоэффективная осушка и очистка сжатого воздуха. Влага в рабочем воздухе, как правило, содержится в двух агрегатных состояниях паровой и жидкой фазах. Наиболее опасна — жидкая фаза, наличие которой приводит к коррозии металлических частей трубопроводов и агрегатов, ускоряет износ технологического оборудования, затрудняет транспортирование сжатого воздуха. Необходимо учитывать, чТо вдоль магистрали сети снабжения предприятия сжатым воздухом всегда имеется определенный перепад температуры, поэтому могут возникнуть термодина-  [c.253]

В работе [659] предполагается, что при малом значении (рр — — р) частицы и поток жидкости возмущены, так что пузыри не могут устойчиво существовать, поскольку нет постоянного сквозного протока жидкости. Временно свободные от частиц объемы создаются центробежной силой турбулентного вихря, но это не пузырь, как мы его здесь понимаем. Жидкие псевдоожиженные слои обычно имеют низкое значение (рр — р). Если жидкость — вода, то нри скоростях, вызывающих значительное распшрение слоя, вихревое движение сопровождается образованием временных пустых объемов, часто напоминающих пузыри. В газовых псевдоожиженных слоях происходит более интенсивное образование пузырей. Авторы работы [818] постулировали, что при псевдоожижении с изменением агрегатного состояния весь избыточный газ по сравнению с минимально необходимым для процесса псевдоожижения циркулирует по слою в виде пузырей. Ценц [899] связывал дальнейший рост пузырей с образованием снарядного режима течения, когда диаметр пузыря равен диаметру канала. Авторы работы [650] получили подтверждение этих теорий с помощью эмпирических зависимостей для образования пузырей и частоты их отрыва средняя толщина пузырькового слоя у определяется по приближенному соотношению  [c.413]

Фазовые переходы I рода не обязательно связаны с изменением агрегатного состояния. Аналогичным образом —со скачками объема и энтропии и со скрытой теплотой перехода — происходят многие полиморфные превращения в твердых телах. При таких превращениях меняется кристаллическая стрзчстура и вместе с ней —практически все другие свойства тела. В этой связи различные кристаллические модификации вещества тоже называют его фазами.  [c.126]



Смотреть страницы где упоминается термин Агрегатное состояние : [c.65]    [c.131]    [c.115]    [c.643]    [c.11]    [c.181]    [c.234]    [c.235]    [c.236]    [c.237]    [c.238]    [c.239]    [c.242]    [c.243]    [c.244]    [c.245]    [c.246]    [c.247]   
Металловедение (1978) -- [ c.42 ]

Металловедение Издание 4 1963 (1963) -- [ c.24 ]

Металловедение Издание 4 1966 (1966) -- [ c.28 ]



ПОИСК



Агрегатное состояние веществ

Агрегатное состояние веществ в диаграммах состояния

Агрегатное состояние системы

Агрегатные состояния вещества. Переход тел из одного агрегатного состояния в другое

Агрегатные состояния и фазовые переходы

Агрегатные состояния материи

ВЗАИМОДЕЙСТВИЕ ДВУХ АГРЕГАТНЫХ СОСТОЯНИЙ

Виды агрегатного состояния тела

Влияние агрегатного состояния шихты при модифицировании нанопорошками

Выражение для градиента температур на границе раздела фаз при наличии процесса изменения агрегатного состояния

Вычисление энтропии при изменении агрегатного состояния при изотермическом процессе

Диаграмма агрегатных состояний воды

Зависимость от температуры и агрегатного состояния катода Результаты измерений в дуге с фиксированным пятном

Зависимость теплового эффекта от агрегатного состояния веществ

Зависимость тепловых эффектов реакций от агрегатного состояния

Замкнутые подсистемы с изменением агрегатного состояния хладагента

Изменение агрегатного состояния

Использование данных по теплотам фазовых переходов для пересчетов величин энтальпий образования, относящихся к различным агрегатным состояниям вещества

Использование энергии изменения агрегатного состояния

Конвективный теплообмен при изменении агрегатного состояния

Некоторые основные свойства процессов теплопередачи при изменении агрегатного состояния вещества и основные уравнения

Нестационарная теплопроводность при изменении агрегатного состояния вещества

Основные понятия о строении, структуре и свойствах материалов Агрегатные состояния вещества

Основные признаки различия агрегатных состояний тела

Разомкнутые подсистемы с изменением агрегатного состояния хладагента

СМАЗОЧНЫЕ МАТЕРИАТребования к смазочным материалам и их классификация по агрегатному состоянию (И. А. Буяновский, Чичинадзе)

Связь конвективного теплообмена с гидродинамикой . ..... ... -t,i Ц. Лх J7JL с Теплоотдача при изменении агрегатного состояния вещества

Смазочный материал - Классификация по агрегатному состоянию

Состояние агрегатное Гиббса — Гельмгольц

Состояние агрегатное идеальных газов

Состояние агрегатное изменения изобарные

Состояние агрегатное изотермические

Состояние агрегатное калорические

Состояние агрегатное необратимые

Состояние агрегатное обратимые

Состояние агрегатное термические

Состояние агрегатное термодинамические

Строение однородных веществ в различных агрегатных состояниях

Теплообмен при изменении агрегатного состояни

Теплообмен при изменении агрегатного состояния

Теплообмен при изменении агрегатного состояния вещества

Теплообменные аппараты, работающие без изменения агрегатного состояния теплоносителей

Теплообменные аппараты, работающие с изменением агрегатного состояния обоих теплоносителей (испарители и паропреобразователи)

Теплоотдача при изменении агрегатного состояния вещества

Теплоотдача при изменении агрегатного состояния и при подводе инородного вещества в пограничный слой

Теплоотдача при изменении агрегатного состояния тел

Теплоотдача при неизменном агрегатном состоянии теплоносителя

Термопластики — Агрегатные состояни

Термопластики — Агрегатные состояни температуры

Условия подобия теплообмена при изменении агрегатного состояния вещества

Физические величины, характеризующие агрегатное состояние вещества



© 2025 Mash-xxl.info Реклама на сайте