Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость распространения главная

После предвестника, приходящего первым в рассматриваемую точку среды, туда приходит главная часть сигнала, способная привести в действие какой-либо измерительный прибор. Скорость распространения главной части сигнала носит название скорости сигнала.  [c.373]

Скорость распространения главной части сигнала носит название скорости сигнала.  [c.451]

Осталось решить задачу о зависимости скорости распространения световой волны в -анизотропной среде, а следовательно, и показателя преломления анизотропной среды от ее конкретных свойств, определяемых главными значениями диэлектрической проницаемости Ву, Sy и е,.. С этой целью составим уравнение, определяющее фазовую скорость (или аналогичным путем скорость по лучу) распространения световой волны в анизотропной среде в зависимости от направления N.  [c.251]


В необыкновенном луче электрический вектор расположен в главном сечении (плоскости, проходящей через оптическую ось кристалла и падающий луч). В результате этого в зависимости от направления распространения необыкновенной волны угол между электрическим вектором и оптической осью меняется от О до 90 , что приводит к изменению скорости распространения необыкновенного луча = Vg от некоторого максимального или минимального (в зависимости от знака кристалла) значения скорости Ve до значения скорости обыкновенного луча t o- Соответственно показатель преломления для необыкновенного луча в зависимости от направления распространения в кристалле принимает значения между и п . Например, для исландского шпата (отрицательный кристалл) По — 1,658 п, = 1,486.  [c.260]

XX, УУ, 22 — главные оси эллипсоида 05 — направление распространения лучей 5 5"5 5" — эллиптическое сечение, перпендикулярное к 05 и определяющее своими главными осями 5 5 и 5"5" направление колеба 1Ия вектора Е п значение лучевых скоростей распространения света V и ь".  [c.502]

Еще яснее представление о поверхности волны можно составить из рис. 26.7, й и б, где изображены трехмерная модель и перспективное изображение трех главных сечений лучевой поверхности. Внешняя поверхность отдаленно напоминает эллипсоид, но обладает четырьмя воронкообразными углублениями в точках, соответствующих М иЛГ на рис. 26.6, в, и похожих на углубления в яблоке. Точки пересечения и Л1 на рис. 26.6, в соответствуют точкам рис. 26.7, где внешняя и внутренняя полости встречаются, так что по направлениям МЛ1 и М М обе скорости распространения светового возбуждения одинаковы (о = и"). Эти направления называются оптическими осями ) кристалла они располагаются симметрично относительно главных направлений кристалла.  [c.504]

Здесь введены обозначения аж=с/Уех, ау — с1 гу, йг= = с/Уб7, которые называются главными скоростями распространения света в кристалле. Уравнение (17.14) называется уравнением Френеля для фазовой скорости света в кристалле.  [c.44]

Трудности, возникающие в эксперименте при фотографировании процесса распространения волн напряжений, обусловлены малой продолжительностью явления, сочетающейся при изучении движения поверхности с малостью перемещений, а при изучении движения фронта волны—с высокими значениями скорости распространения. Возникает потребность в синхронизации источника освещения с исследуемым явлением, при этом главная задача состоит в получении хорошего снимка. Для этого используют особенности изучаемого явления, так, например, удар снаряда о преграду можно использовать для начального включения искры, разрыв проволочек на пути движения снаряда в преграде обеспечивает последующие включения искры. Для получения одиночного изображения движущегося объекта применяется метод, в котором объект перекрывает пучок света между фотоэлементом и конденсатором. Синхронизация движения объекта с одиночной вспышкой достигается изменением расстояния между предметом и его положением, при котором он прерывает луч. Если фотографируемое явление сопровождается звуком, то можно использовать микрофонный адаптер. Синхронизация между явлениями, порождающими звук, и источником света достигается изменением положения предмета относительно микрофона ряд последовательных фотографий повторяющихся операций получают изменением положения микрофона от экспозиции к экспозиции. В зависимости от конкретной задачи возможны различные комбинации микрофонного адаптера и связанной с ним аппаратуры.  [c.30]


Каждый цикл водной очистки поверхностен нагрева котла вызывает одновременно углубление термоусталостных трещин в поверхностном слое металла трубы и ускоряет коррозионно-эрозионный износ. Таким обр,азом, эти явления между собой тесно связаны и определены, главным образом, при прочих равных условиях, частотой очистки. Такое одновременное влияние цикла очистки на развитие термоусталостных трещин и износ вызыв-ает определенные трудности при разделении этих процессов. При наличии износа вершины трещин сдвигаются к наружной поверхности трубы, в зону более высоких термических напряжений. Поэтому износ приводит к увеличению абсолютной скорости распространения трещин, и в пределе, при скорости износа, близкой к скорости распространения трещины, они не возникают, а утонение стенки трубы определяется лишь закономерностями износа. Следовательно, с увеличением интенсивности износа глубина трещины, отсчитанной от изношенной поверхности, будет уменьшаться.  [c.249]

В распространении механических волновых движений главную роль играют такие свойства среды, как деформируемость и инерционность. Если бы среда была недеформируемой, то любое локальное возмущение мгновенно передавалось бы любой ее части как внутренняя сила или ускорение. Аналогичным образом, если бы гипотетическая среда была безынерционной, то не существовало бы никакой задержки в движении частиц и передача возмущения от частицы к частице происходила бы мгновенно. В самом деле, можно показать аналитически, что скорость распространения механических возмущений всегда пропорциональна корню квадратному из отношения параметра, определяющего сопротивление среды деформированию, к параметру, характеризующему ее инерционность. Все реально существующие материалы, конечно, деформируемы и инерционны (обладают массой) следовательно, все реальные материалы передают механические волны.  [c.389]

Проявлением структуры любого тина ПКМ является его анизотропия. Тогда основной количественной оценкой анизотропии материала является значение степени анизотропии скорости распространения упругих волн (САС), которая определяется как отношение скорости в направлении экстремальных значений, т. е. вдоль главных структурных направлений ПКМ.  [c.113]

Первая четвертьволновая пластинка установлена так, что ее главные оси составляют 45° с плоскостью колебаний поляризатора. Проходя через эту пластинку, луч света разлагается на следующие две составляющие А2 и Аз вдоль главных осей S и F (оси наименьшей и наибольшей скоростей распространения света)  [c.40]

Но если среда имеет граничную поверхность, то но поверхности могут распространяться волны третьего типа, называемые волнами Релея. Эти волны распространяются главным образом жо поверхности, проникая внутрь тела лишь на небольшую глубину. Скорость распространения поверхностных волн Сд меньше скоростей волн расширения и сдвига и, как можно показать, зависит только от упругих постоянных материала.  [c.368]

Темпы технологических изменений. Прогнозирование технологических изменений является одним из наиболее сложных вопросов при оценке потенциала будущего развития энергетики. Как было показано в начале предыдущей главы, влияние технологических изменений в недостаточной степени учитывалось в классических экономических моделях, да и сейчас не видно возможностей для точного количественного учета этого фактора. Старые поговорки типа нужда есть мать изобретений все еще в ходу либо в прямой форме, либо под прикрытием современного жаргона. Во многих попытках извлечь уроки из прошлого применяют скорее арифметический подход, чем исторический или исследовательский, для применения которых потребовалось бы рассмотрение всей совокупности условий, в которых возникла каждая цифра. Примеры, показывающие важность использования подобных приемов при определении направлений технического прогресса, неоднократно приводились выше. Здесь следует, однако, подчеркнуть высокую скорость распространения новшеств во всех странах мира в современных условиях. Так, возможно, что, хотя текстильная промышленность и имеет информацию о величине энергетических затрат в различные швейные изделия, главное значение будет иметь большая скорость изменений женской моды.  [c.352]

Скорость распространения света в кристаллах зависит от направления луча и от направления колебаний в этом луче, т. е. от поляризации. Поэтому в кристаллах наблюдается явление двойного лучепреломления. Луч, падающий на кристалл, разделяется на два луча, поляризованные в двух главных направлениях пластинки (по ее кристаллической оси и перпендикулярно этой оси) и распространяющиеся с разными скоростями. Пройдя через пластинку, лучи сдвинутся по фазе и будут различны по  [c.228]


Оптические свойства в каждой точке анизотропной среды выражаются эллипсоидом показателей преломления с полуосями, равными главным показателям преломления Пу, 2 и щ среды, связанными со скоростями распространения света в этих направлениях [91. Направления полуосей являются главными осями оптической симметрии.  [c.19]

На рис. 5.55 показано соотношение между скоростью распространения трещины и полудлиной трещины I. Напряжение Og = = т/а + Зт является эквивалентным напряжением Мизеса. Из приведенных результатов следует, что при постоянном максимальном главном напряжении скорость распространения трещины при комбинированном нагружении растяжением — кручением больше, чем при одноосном растяжении, а при чистом кручении (т. е, при уравновешенном двухосном растяжении — сжатии) больше, чем при указанном комбинированном нагружении, Следовательно, если действует напряжение сжатия a g, параллельное трещине, то даже при постоянном напряжении дальнего порядка, направленном перпендикулярно оси трещины, скорость dl/dt увеличивается, причем увеличивается тем больше, чем больше o g по абсолютной величине. В связи с этим можно предположить, что при растяжении напряжение a g, наоборот, уменьшает эту скорость. Таким образом, на распространение трещины ползучести оказывает влияние несингулярное поле напряжений, параллельное трещине сопротивление ползучести образцов с трещиной нельзя считать обусловленным максимальным главным напряжением.  [c.180]

Распространение оптического излучения в кристалле полностью определяется тензором непроницаемости (4.3.2). Напомним, что т) = СцЕ . Два направления поляризации и соответствующие показатели преломления (т. е. скорости распространения) нормальных мод проще всего найти с помощью эллипсоида показателей преломления (4.3.9). Эллипсоид показателей преломления наиболее просто записывается в системе главных координат  [c.238]

В общем, случае анизотропного кристалла при условии, что его главные диэлектрические оси совпадают с направлениями осей системы координат, для обратных величин главных показателей преломления ax=l/ j, fly=l//Zy и аг=1/Яг (их называют обратными показателями или главными скоростями распространения световых волн в соответствующих направлениях кристалла) имеем уравнение оптической индикатрисы  [c.16]

Конструкторскую разработку должны предварять или, в крайнем случае, сопровождать испытания конструктивных образцов и моделей второго этапа исследования. На втором этапе определяются допускаемые напряжения сжатия в силовом продольном наборе выносливость регулярной зоны нижнего и верхнего силовых продольных наборов выносливость критических мест конструкции, главным образом, поперечных стыков (для выбора типа стыка и оценки его соответствия требуемому ресурсу) скорость распространения треш,ин на образцах для проверки выбора материала и типа конструкции.  [c.24]

Если пластинку из такого материала деформировать в ее плоскости (создать плоское напряженное состояние = 0), а затем через какую-нибудь ее точку пропустить падающий нормально к пластинке луч плоско-поляризованного света, то после прохождения через пластинку свет будет представляться как результат наложения лучей, поляризованных в плоскостях, проходящих через нормаль и главные оси деформации, причем эти лучи будут иметь разность хода, обусловленную различными скоростями распространения. Так как скорость света в среде равна v — nv , где п — показатель преломления и — скорость света в вакууме, то, пользуясь первым из соотношений (8. 14), а именно,  [c.356]

II. Разность скоростей распространения двух противоположно поляризованных волн, имеющих тот же самый волновой фронт, пропорциональна разности главных деформаций в плоскости фронта волны.  [c.168]

II А. Разность квадратов скоростей распространения двух противоположно поляризованных лучей, имеющих один и тот же фронт волны, пропорциональна для данного тела в данном состоянии деформации разности главных деформаций в плоскости фронта волны, причем коэффициент пропорциональности является симметричной функцией трех главных деформаций.  [c.169]

II. Разность квадратов скоростей распространения двух волн пропорциональна разности двух главных напряжений в плоскости фронта волны.  [c.174]

После возникновения трещины в процессе ее распространения можно выделить две стадии 1) растрескивание в плоскости скольжения со скоростью несколько ангстрем за цикл. Эта стадия продолжается до тех пор, пока трещина не достигнет границ зерна. Если трещина возникает от острых концентраторов, то эта стадия может отсутствовать 2) трещина распространяется под прямым углом к направлению главного растягивающего напряжения. Скорость распространения трещины на этой стадии увеличивается до несколь ких микрон за цикл. Трещины распространяются с помощью двух основных механизмов пластического затупления вершины трещины или отрыва.  [c.90]

Метод интерференции микроволн. Развтие техники сверхвысоких частот в военные и послевоенные годы пoзвoлиJЮ значительно расширить возможности эксперимента и сделать резкий рывок в увеличении точности измерений скорости распространения электромагнитных волн. Именно в СВЧ-диапазоне (длины волн порядка i см) возможны очень точные и, главное, независимые измерения частоты излучения v и его длины волны А. Скорость распространения излучения =Xv, таким образом, также определяется с высокой точностью.  [c.125]


Поляризационные явления в одноосных кристаллах. Оптическая ось одноосного кристалла характеризует направление, при распространении в котором луч света ведет себя как в изотропной среде, т. е. распространяется в среде П1ЭИ любой поляризации с одной и той же скоростью (при данной частоте). Однако при неколли-неарности луча и оси одноосного кристалла ситуация существенно изменяется. Через луч, направленный под углом к оптической оси, и оптическую ось можно провести плоскость, называемую главной (рис. 18). В этом направлении возможными являются лишь лучи света, вектор напряженности электрического поля которых колеблется либо в главной плоскости ( необыкновенный луч), либо перпендикулярно главной плоскости ( обыкновенный луч). Скорость необыкновенного луча зависит от угла между лучом и оптической осью скорость обыкновенного луча одинакова по всем направлениям (поэтому он и называется обыкновенным). Если луч света падает на плоскую поверхность одноосного кристалла, вырезанного параллельно оптической оси по нормали к поверхности (рис. 19), то в кристалле распространяются два пространственно совпадающих луча с взаимно перпендикулярными направлениями линейной поляризации. При угле падения, отличном от нуля (рис. 20), происходит преломление каждого из лучей в соответствии со скоростью распространения света в кристалле, т. е. при показателе преломления п = /v, где с-скорость света в вакууме, у-скорость света в кристалле. Поэтому после преломления обыкновенный и необыкновенный лучи имеют различные направления и начинают пространственно разделяться, т.е. падающий луч испытывает  [c.34]

Чтобы сохранить в модели некоторые свойства, присущие твердому телу (сопротивляемость деформациям сдвига, упругость, пластичность, существование упругих предвестников ударных волн и волн разгрузкн, связанных с наличием более высокой скорости распространения возмущений, чем это следует из чисто гидродинамической модели), вводится девиатор напряжений т". В случае однофазной среды его принимают изменяющимся линейно с ростом деформаций по закону Гука до некоторого предела, после чего он должен удовлетворять условию пластпч-ностп. В главных осях тензора напряжений закон Гука, определяемый модулем сдвиговой упругости G, можно записать в виде  [c.147]

В так называемых одноосных кристаллах существует только одно выделенное направление, называемое оптической осью, вдоль которого световые волны одинаковой длины распространяются с одной и той же скоростью независимо от направления колебаний их электрических полей. Величина этой скорости зависит только от частоты световых колебаний (явление дис-нерсии). При распространении световой волны по какому-либо направлению, не совпадающему с оптической осью, она распадается на две волны (обыкновенную и необыкновенную) со взаимно перпендикулярной направлениями колебаний их электрических полей. Вектор Еа обыкновенной волны колеблется перпендикулярно к главной плоскости кристалла, проходящей через луч и оптическую ось. Вектор необыкновенной волны колеблется в главной плоскости. Скорость распространения обыкновенной волны (Уо), а значит, и коэффициент преломления обыкновенного луча (по), одинаковы по всем направлениям в кристалле. Скорость распространения необыкновенной волны (Уе), а значит, и коэффициент преломления необыкновенного луча (ле), зависят от направления.  [c.232]

Эти условия будут приблизительно соблюдены для стеклянной трубки, закрытой двумя пробками, из которых одна неподвижна, а другая, слабо подвижная, соединена с острием камертона или другим телом, которое. может сильно колебаться. Если это тело производит колебания, продолжительность которых приблизительно равна продолжительности колебаний собственного тона ограниченного столба возду.ха, то последний пр, ходит в колебания столь интенсивные, что мелкий порошок, насыпанный в трубку, приходит в движение, и положение узлов может быть с точностью определено. Причина того, что ни при каком значении п движение воздуха не возрастает безгранично, заключается в том, что стенки трубки ие, абсолютно тверды, подвижная трубка не вполне плотно пр.шнана и, главное, в трении воздуха. На описанно.м явлении основывается метод Кундта для измерения скорости распространения звука в различных газах.  [c.271]

Хотя в предыдущих рассуждениях говорится о волновых поверхностях, скорости распространения и принципе Гюйгенса, по существу рассматривается аналогия не между механикой и волновой оптикой, а аналогия между механикой и геометрической оптикой. Дело в том, что понятие лучо, с которым главным образом связывается механика, является в основнол понятием геометрической оптики и только в геометрической оптике имеет строгий смысл. Принцип Ферма также может быть истолкован в рамках геометрической оптики с использованием понятия о показателе преломления. Кроме того, система -поверхностей, рассматриваемых как волновые поверхности, значительно слабее связана с механическим движением, поскольку изображающая механическую систему точка распространяется по лучу не с волновой скоростью , а со скоростью, пропорциональной (при постоянном значении Е)  [c.683]

В некоторых случаях, когда требуется быстрая модуляция интенсивности излучения, используются ячейки Поккельса. Основным элементом ячейки является одноосный кристалл (КДР, АДР и др.). Луч света направляется по оптической оси кристалла при этом оба луча — обыкновенный и необыкновенный — распространяются в кристалле с одной и той же скоростью. При приложении к кристаллу электрического поля вдоль оптической оси кристалл становится двуосным с главными осями ох и оу, составляющими угол 45° с кристаллографическими осями ох и оу (рис. 45). Скорость распространения в нем двух волн, поляризованных во взаимно перпендикулярных плоскостях, проходящих через ох и ог/, оказывается различной. Когда на кристалл падает линейно-поляризованный свет, плоскость поляризации которого совпадает с ох, то в кристалле распространяются две взаимно перпендикулярно поляризованные компоненты с различными скоростями v-y и Uj. Пройдя некоторый путь, они приобретают разность фаз, зависящую от приложенного к кристаллу напряжения, вследствие чего на выходе из кристалла свет становится эллипти-чески-поляризованным, причем эксцентриситет эллипса поляризации зависит от разности фаз, т. е. от приложенного напряжения. Пропуская затем модулированный таким образом свет через поляризационную призму, получают лазерный луч, модулированный по амплитуде, т. е. по интенсивности.  [c.73]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]


Наиболее важными характеристиками улучшаемых сталей являются прокаливаемость и сопротивление усталости. Глубина прокаливаемого слоя у легированной стали 40Х составляет 40 мм, а у сложнолегированных сталей 40ХНМ и 38ХНЗМА — 100 мм. Этого достаточно для термического улучшения деталей широкой номенклатуры, а для ряда осесимметричных деталей не требуется сквозная прокаливаемость. Например, конструкционная прочность валов обеспечивается, когда структура сорбита отпуска образуется в слое толщиной, равной половине радиуса вала. Недостатком ряда улучшаемых сталей является чувствительность к обратимой отпускной хрупкости. К ней наиболее склонны хромомарганцевые и хромоникелевые стали с большой прокаливае-мостью. Для предотвращения охрупчивания деталей из этих сталей при высоком отпуске принимают технологические меры. Улучшаемые стали, содержащие молибден, нечувствительны к отпускной хрупкости. После термического улучшения о не превышает 550 МПа. В результате расчета долговечности деталей по этим значениям получают большие размеры деталей, что неприемлемо из-за увеличения расхода металла и габаритных размеров механизмов. При расчете ограниченной долговечности деталей исходят из переменных напряжений, больших Это основано на живучести сталей после термического улучшения, когда главное значение имеют малые скорости распространения усталостных трещин. Проверка деталей средствами неразрушающего контроля позволяет обнаруживать усталостные трещины и заменять дефектные детали.  [c.104]

Можно предположить, что отказ от баротропности и введение уравнения притока тепла по тому или иному закону может сугцественным образом изменить дело и привести к нестационарным разрывам второго порядка, распространяю-гцимся с меньгаими скоростями. По этому вопросу имеется работа А. Фридмана и Я. Тамаркина [11], в которой авторы, имея в виду, главным образом, приложения к теории инверсий, изучают распространение разрывов нри различных предположениях о способе притока тепла. Однако и в тех случаях, которые рассматривает Фридман, скорость распространения разрыва сохраняет порядок скорости звука и, следовательно, ни один из этих случаев не может быть использован для интерпретации тропопаузы.  [c.221]

Поляризационно-динамическая установка и способ инициирования роста трещин для камер типа СФР были разработаны в лаборатории исследования напряжений МИСИ им. В.В. Куйбышева [43]. Рассмотрим методику определения динамического коэффициента интенсивности напряжений по картинам интерференционных полос. На рис. 4.1 представлены отдельные фрагменты покадровой съемки процесса динамического распространения трещины в предварительно растянутой пластине из отвержденной эпоксидной смолы, скорость съемки -650 ООО кадров в секунду. Многие исследователи считают картину интерференционных полос иодобной статической, игнорируя фактор распространения трещины. Делается допущение об идентичности распределения напряжений в статике и динамике. Однако квазистатическая методика определения динамического коэффициента интенсивности напряжений может привести к существенным погрешностям при больших скоростях распространения трещины. В самом деле, в вершине стационарной трещины на линии ее роста Оуу. В случае же распространяющейся трещины отношение главных напряжений Oyyj а у. на этой  [c.86]

Увеличение подводимой к вершине энергии с течением времени должно было бы увеличивать скорость распространения трещины до предельной теоретической скорости, равной скорости распространения поверхностных волн Рзлея. Однако в практике такие скорости разрушения не наблюдаются, так как в теоретической модели не учитываются важные физические явления, происходящие в концевой области трещины. Упругое тело содержит в себе различного рода микродефекты типа микротрещин, пустот, пор и т. д. Число и размеры этих микродефектов существенно растут в области какого-либо концентратора, если тело, содержащее зтот концентратор, находится под нагрузкой. В частности, в окрестностях вершин макроскопической трещины, где напряжения достигают весьма больших значений, микродефекты должны существенно влиять на процесс распространения трещины. Естественно, что концентрация, размеры и расположение растущих дефектов в области вершины трещины будут зависеть от напряженного состояния в этой области. В большой степени они будут зависеть от величины и направления максимального растягивающего напряжения. Исследование распределения главных напряжений по полярному углу б в области вершины растущей трещины, показывает, что главное растягивающее напряжение Oj принимает свое максимальное значение при в = 60°. Это означает, что роста концентрации микродефектов в области вериш-  [c.127]

II. Переходная зона. Размеры кромок скола в этой зоне постоянно увеличиваются до тех пор, пока не займут всю поверхность разрушения. Вторая зона поверхности разрушения обладает повышенной по сравнению с первой шероховатостью, что связано с более высокой скоростью распространения трещины. Обычно кромки скола наклонены так, что в конце этой зоны они образуют одну плоскость, расположенную под углом 45° к поверхности образца. На некоторых образцах, испытаннь1х при высоких напряжениях, кромки скола разделяются на две плоскости, расположенные прибли-зител1 о под углом 45° к направлению главных растягивающих напряжений.  [c.323]

Полезно иметь в виду, что разрывы в зоне разрушения контролируются локальными деформациями материала в области, примыкающей к зоне предразрушения. Для получения движущейся трещины окружающее упругое поле должно вызвать такие непрерывные пластические деформации на продолжении конца трещины, чтобы их было достаточно для осуществления процессов разделения. Введение устройства, которое могло бы ограничить или фиксировать смещения выше и ниже зоны разрушения, привело бы к немедленному приостановлению процесса разрушения. Увеличение К может увеличить поле пластической деформации, повысить размер зон скачкообразного распространения трещины и обусловить большую скорость трещины. Хотя существуют усложняющие явление оброятельства, например локальные ветвления, не нарушаюшде, однако, устойчивость направления распространения трещины, вероятно, ограничения на скорость распространения пластической зоны у конца трещины служат главным фактором, определяющим постоянство предельной скорости распространения трещин в конструкционном материале. Например, во время хрупкого разрушения широких стальных плит толщиной 25 мм наблюдалась скорость от 1500 до 1800 м/с. Напротив, измерения скорости трещин в газопроводных трубах толщиной около 10 мм показали, что, когда пластическая зона имеет достаточно большую величину (на поверхности излома разрушение срезом составляет 507о и выше), предельная скорость трещины обычно не превышает 400 м/с [3J.  [c.15]

В земной коре различают два главных слоя осадочный, состоящий из пород, залегающих почти горизонтально, и консолидированный, или кристаллический. Скорости распространения упругих волн в осадочных породах имеют широкие пределы, но в толстых слоях обычно не превышают 5км/сек. Консолидированной части коры свойственны скорости свыше 6 км1сек (на континентах в верхней части консолидированной коры скорости близки км/сек, в нижней — к 7 км/сек, на океанах 6,5—7 км/с к).  [c.992]

Тот же самый результат получается при падении волны в обратном направлении от воды к воздуху. Отражение еще болое увеличивается и прохождение уменьшается при наклонном падении. Полная теория этого вопроса была разработана Грином (1847). Результаты исследования представляют интерес главным образом в связи с оптическими аналогиями, однако можно отметить одно замечательное обстоятельство. Вследствие большей скорости распространения звука в воде может иметь место полное отражение при падении звука из воздуха на воду (именно, нри угле падения больше ar sin 0,222, или около 13°).  [c.218]

Можно сказать, что есть фазовая скорость волны, соответствующая оси Х . Однако отметим, что она не является проекщ1ей фазовой скорости волны на ось Л /, а характеризует фазовую скорость волны, векторы Е и В которой коллинеарны оси Л, . Скорости у, называют главными скоростями распространения волны. С учетом (40.12) уравнения (40.9) могут быть представлены в виде.  [c.266]

Интересной в теоретическом отношении является работа [151], в которой получены зависимости для определения упругих постоянных, вещественных и мнимых частей комплексных модулей и коэффициентов Пуассона в оротропном и изотропном слоях по скоростям распространения и декремента затухания продольных и сдвиговых колебаний. Для определения всех упругих параметров ортотропной пластины необходимо экспериментально определить скорости продольных волн вдоль главных направлений и скорость сдвиговых колебаний в одном главном направлении и под углом 45° к нему. Комплексные составляющие модулей и коэффициентов Пуассона определяются по скоростям и декрементам затухания колебаний. Однако в этой работе совершенно не затрагивается задача онределе-  [c.71]



Смотреть страницы где упоминается термин Скорость распространения главная : [c.44]    [c.750]    [c.442]    [c.41]    [c.393]    [c.22]    [c.181]   
Основы оптики Изд.2 (1973) -- [ c.619 , c.623 ]



ПОИСК



Скорость главная

Скорость распространения



© 2025 Mash-xxl.info Реклама на сайте