Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженности электрического поля вектор

Суперпозиция состояний. В классической физике важную роль имеет принцип суперпозиции. Ему удовлетворяют все величины, поведение которых описывается линейными дифференциальными уравнениями. На рис. 21 представлен принцип суперпозиции для напряженности электрического поля вектор напряженности ё является суммой напряженностей -x.t. S Благодаря  [c.40]

Здесь Я—вектор напряженности магнитного поля, Е — вектор напряженности электрического поля, / — вектор плотности тока. Ре — плотность электрических зарядов. Я, В — векторы электрической и магнитной индукции. К этим уравнениям надо добавить закон Гука. Уравнения движения (1.11) при наличии электромагнитных полей принимают вид  [c.240]


Теория Максвелла утверждает, что между основными величинами, характеризующими электромагнитное поле в произвольной неподвижной среде или в пустоте, существуют простые и универсальные связи, выражаемые написанными ниже четырьмя уравнениями. В эти уравнения входят величины, физический смысл которых предполагается известным читателю вектор — напряженность электрического поля вектор — электрическая индукция (ее иногда называют также—неудачно—электри-  [c.236]

Поскольку поверхность пузырька газа является проводящей, вектор напряженности электрического поля Е направлен по нормали к ней. Нормальные компоненты напряженности являются непрерывными на поверхности, следовательно, гЕ = е Е . Подставляя в условие равновесия давлений (4.4.11) Е —Е, на-ходим  [c.148]

Здесь к — показатель адиабаты Ь — проводимость среды, отнесенная к скорости света в пустоте с а = 1/41г I — время, умноженное на с р — давление, деленное на с т — плотность газа 8 — энтропийная функция, деленная на с V — вектор скорости, отнесенный к с Я — вектор напряженности магнитного поля, отнесенный к с Я — вектор напряженности электрического поля, отнесенный к с.  [c.29]

Формулы Френеля. Определим теперь распределение интенсивности света между отраженными и преломленными световыми волнами. С этой целью удобно разложить вектор напряженности электрического поля (световой вектор) у всех трех волн на два взаимно перпендикулярных вектора — один в плоскости падения,  [c.48]

Тензор диэлектрической проницаемости. Известно, что для электрически изотропной среды вектор электрической индукции D и вектор напряженности электрического поля Ё совпадают по направлению и связаны соотношением  [c.246]

Вектор G называют напряженностью поля. Заметим, что напряженность электрического поля обозначают вектором Е, а сила Р, действующая на точечный заряд q в электростатическом поле, имеет вид, аналогичный (4.19), т. е. Р = (7Е.  [c.96]

Напряженность электрического поля — векторная величина. За направление вектора Е напряженности электрического поля принимается направление вектора кулоновской силы F , действующей на точечный положительный электрический заряд, помещенный в данную точку поля.  [c.134]

Линии напряженности электрического поля. Линией, напряженности электрического поля называется линия, касательная к которой в каждой точке совпадает с вектором напряженности Ё.  [c.134]


Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Поэтому в электрическом поле поверхность проводящего тела любой формы является эквипотенциальной поверхностью.  [c.141]

В результате поляризации на поверхности вещества появляются связанные заряды (рис. 143). Эти заряды обусловливают взаимодействие нейтральных тел из диэлектрика с заряженными телами. Вектор напряженности электрического поля, создаваемого связанными зарядами на поверхности диэлектрика, направлен внутри диэлектрика противоположно вектору напряженности Eq внешнего электрического поля, вызывающего поляризацию (рис. 144). Напряженность элект-  [c.142]

Это явление получает объяснение, если принять, что свет представляет собой поперечные волны. При прохождении через первый кристалл происходит поляризация света, т. е. кристал.п пропускает только такие волны, в которых колебания вектора Е напряженности электрического поля совершаются в одной плоскости. Эта плоскость называется плоскостью поляризации. Если плоскость, в которой пропускаются колебания вторым кристаллом.  [c.268]

Ve ii +Е - и, наоборот, зная Е, можно разложить его на две взаимно перпендикулярные компоненты. В качестве направлений таких компонент Е удобно выбрать следующие первая лежит в плоскости падения — будем обозначать ее и, вторая Е колеблется перпендикулярно этой плоскости. Запись граничных условий для амплитуд и последующий вывод формул Френеля будем проводить раздельно для этих двух взаимно перпендикулярных направлений колебаний вектора напряженности электрического поля.  [c.82]

Если рассматриваются векторы напряженности электрического поля, колеблющиеся перпендикулярно плоскости падения [(Ei)j и Е ], и если Ф > Ф2 (т.е. 2 > i)> то получим, учитывая (2.11), что и для ф + ф2 < л/2, и для ф 4 ф2 > п/2 отношение ( ю) l/(-Eoo) i остается отрицательным.  [c.91]

Совершенно аналогичные рассуждения приводят к выводу, что если вектор Е в падающей волне направлен вдоль оси У, то в кристалле будет распространяться со скоростью и — / fzy волна, в которой вектор напряженности электрического поля Е колеблется вдоль оси Y. Уравнение этой волны  [c.129]

Из определений г, v и а следует, что все эти величины являются векторами. Сила F, напряженность электрического поля Е и индукция магнитного поля В также являются векторами чтобы доказать это, мы должны на основании опытных данных убедиться, что они обладают свойствами, необходимыми для векторов.  [c.47]

Опыт показывает, что сила F — Л1а, где масса М — постоянный скаляр ). Поскольку а — это вектор, сила тоже должна быть вектором. Напряженность электрического поля определяется как сила, которая действует на неподвижную частицу с единичным зарядом, находящуюся в электрическом поле таким образом, и напряженность электрического поля Е должна быть вектором. Опытным путем установлено, что магнитные поля складываются по закону сложения векторов совместное действие полей с магнитной индукцией Bi и Ва в точности равносильно действию одного магнитного поля с индукцией Bj + Ba, т, е. индукция магнитного поля В также является вектором.  [c.47]

Можно построить трехмерную схему электрического поля, созданного системой неподвижных зарядов. Каждой точке пространства мы приписываем вектор, имеющий абсолютную величину и направление напряженности электрического поля Е. Может быть, будет яснее, если сказать, что мы приписываем каждой точке тройку чисел, представляющих собой величины составляющих этого вектора Ех, Еу, Ег. Такая схема называется векторным полем.  [c.115]

Ускорена заряженных частиц в циклотроне. Предположим, что в циклотроне В = zB и Е, = Е os Шц<, , = —Е sin < ц<, = О, причем значение Е постоянно (в реальном циклотроне электрическое поле не является пространственно-однородным). Очевидно, что при этих условиях вектор напряженности электрического поля описывает круг, вращаясь с циклотронной частотой (О,. Покажите, что движение заряженной частицы определяется следующими уравнениями  [c.133]

Если свет естественный, то Е = Е, т. е. за промежуток времени, короткий по сравнению с временем наблюдения, но длинный по отношению к продолжительности внутриатомных процессов, квадраты компонент вектора напряженности электрического поля, лежащие в плоскости падения и перпендикулярные к ней, в среднем равны между собой.  [c.479]


В плоскости волнового фронта, т. е. в плоскости, перпендикулярной к М, расположены вектор О (электрической индукции) и вектор Н (напряженности магнитного поля), который совпадает с вектором магнитной индукции В = р//, ибо р в оптике для большинства сред равно 1. Вектор же Е (напряженность электрического поля), не совпадающий с О, образует с N угол, отличный от прямого ). Оба вектора Е и О всегда перпендикулярны к //, так что общее расположение векторов соответствует рис. 26.4. Сказанное и построение рис. 26.4 относится к каждой из указанных выше линейно-поляризованных волн в отдельности.  [c.500]

Силы, которые действуют на заряженные частицы в электромагнитном иоле, определяются теорией Максвелла. Согласно этой теории электромагнитное поле характеризуется вектором напряженности электрического поля Е(Еу, Еу, Е ) и вектором напряженности магнитного поля Н(Нх,Ну, Нг). По этим векторам в пространстве Минковского строится антисимметричный тензор второго ранга G, который задается следующей матрицей  [c.469]

Электрон движется в поле стояче волны с вектором напряженности электрического поля Е(г, =Ео os/гг os oj/. Найти уравнение движения, описывающее плавную составляющую траектории.  [c.185]

Решение исходной задачи можно свести к рассмотрению двух частных случаев а) электрический вектор Е лежит в плоскости падения электромагнитной волны б) электрический вектор Е перпендикулярен к плоскости падения волны. Этот подход обоснован с той точки зрения, что для каждого момента времени нетрудно вычислить величину суммарной напряженности электрического поля Е, если известны две ее проекции на границу раздела ( ц и ),так как  [c.14]

Помещая в электростатическое поле заряда 91 положительный заряд 92 и измеряя силу f, приложенную к нему, мы получаем вектор напряженности электрического поля в данной его точке.  [c.179]

Соотношением (59), связывающим циркуляцию вектора напряженности электрического поля Е по замкнутому контуру I со скоростью изменения по времени потока вектора магнитной индукции через площадь, охватываемую этим контуром  [c.193]

Диэлектриками называют вещества, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Такое поле может длительно сохраняться лишь в средах, плохо проводящих электрический ток. Электропроводность — способность проводить электрический ток—обусловлена наличием в веществе свободных носителей заряда—электрически заряженных частиц, которые под действием внешнего электрического поля направленно перемещаются сквозь толщу материала, создавая ток проводимости (положительно заряженные носители движутся по направлению вектора напряженности электрического поля Е, отрицательно заряженные— против). Параметром вещества, количественно определяющим его электропроводность, является удельная электрическая проводимость у, См/м, а также удельное объемное электрическое сопротивление p = l/Y, Ом-м, причем  [c.543]

В диэлектрике, находящемся в электрическом поле, происходит рассеяние (диссипация) энергии. Рассеиваемую за одну секунду энергию (мощность) называют диэлектрическими потерями. Теряемая энергия преобразуется в теплоту, вызывая нагрев диэлектрика, вследствие чего ухудшаются электрические и другие важные его характеристики. Потери в диэлектриках наблюдаются как при переменном, так и при постоянном напряжении, однако под диэлектрическими потерями понимают мощность, рассеиваемую в переменном электрическом поле. Вектор тока в образце диэлектрика, включенном под переменное напряжение, опережает по фазе вектор напряжения на угол ф<90°. Угол б, дополняющий ф до 90°, называют углом диэлектрических потерь. В идеальном диэлектрике без потерь ф=90° и 6 = 0. В качестве параметра диэлектрика используется ig 6 — тангенс угла диэлектрических потерь.  [c.544]

Благодаря этому электроны в металле начинают раскачиваться , амплитуда их вынужденных колебаний возрастает. При достижении достаточно большой энергии электрон покидает катод, т. е. происходит внешний фотоэффект. Однако объяснить количественные закономерности фотоэффекта оказалось невозможно. Амплитуда вынужденных колебаний электрона в волновой картине излучения пропорциональна амплитуде колебаний вектора напряженности электрического поля падающей на катод электромагнитной волны. Плотность светового потока энергии прямо пропорциональна квадрату амплитуды колебаний напряженности электрического поля волны. Следовательно, максимальная скорость покидающих катод фотоэлектронов должна увеличиваться с возрастанием плотности светового потока энергии. В действительности же скорость фотоэлектронов не зависит от нее. Не согласуется также с волновыми представлениями очень малое время запаздывания в фотоэффекте. Время запаздывания, которое дают расчеты, оказывается во много раз большим экспериментальной верхней оценки времени запаздывания. Наличие граничной частоты  [c.21]

Поляризация электромагнитных волн определяется поведением вектора напряженности электрического поля волны, который всегда перпендикулярен лучу. При линейной поляризации конец вектора напряженности с началом на луче в фиксированный момент времени при перемещении по лучу описывает синусоиду на плоскости, в которой лежат луч и вектор напряженности. Эта плоскость называется плоскостью колебаний вектора напряженности электрического поля. Плоскостью поляризации называется плоскость (в которой колеблется вектор магнитной индукции волны), перпендикулярная плоскости колебаний вектора напряженности электрического ПОЛЯ. Однако плоскость поляризации в этом смысле в настоящее время практически не используется и поля-  [c.33]


Это означает, что каждая составляющая вектора электрической имдукцни D выражается через все три составляющие вектора напряженности электрического поля  [c.247]

Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а). Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и част1щы  [c.181]

В промежутке между своими узлами каждый из векторов (Е и Н) изменяется во времени так, что между его колебаниями в любых двух точках нет разности фаз. При этом для всех точек между двумя узлами одновременно достигается Емакс но они имеют разные амплитуды. В узлах напряженности электрического поля имеют значение Е = О. Так же, но со сдвигом по фазе тг/2 колеблется вектор Н.  [c.77]

Анизотропия в электрическом поле. Возникновение анизотропии в электрическом поле было обнаружено Керром в 1875 г. и с тех пор широко используется в технике эксперимента. В настоящее время явление Керра хорошо исследовано как экспериментально, так и теоретически. Это оказалось возможным благодаря тому, что эффект наблюдается в веществах, находящихся в жидком и даже газообразном состоянии, а их изучение несравненно проще изучения твердого тела. Схема опыта относительно проста (рис. 3.10). Между двумя скрещенными поляризаторами Pi и / 2 располагают плоский конденсатор. Между пластинами конденсатора помещают кювету с жидким нитробензолом — веществом, в котором изучаемый эффект весьма велик. При включении напряжения происходит поляризация молекул нитробензола и их выстраивание. Так создается анизотропия вещества с преимущественным направлением (оптической осью кназикрис-талла) вдоль вектора напряженности электрического поля. Так же как и при механической деформации, излучение становится эллиптически поляризованным и частично проходит через второй поляризатор, скрещенный с первым, т.е. установленный так, чтобы не пропускать линейно поляризованный свет. Опыт дает Ап = н,, — п = КЕ , где К — некая константа, как правило, положительная. Однако для некоторых веществ К оказывается меньше О (это значит, что /г > п , т.е. образуется отрицательный квазикристалл).  [c.122]

В заключении упомянем об одном явлении. В детальных экспериментах бьию замечено, что при определенных условиях опыта зависимость (/.) не является монотонной и имеет максимум в некоторой области спектра, зависящей от угла падения света на фотокатод, а также его поляризации. При этом оказалось, что такой селективный эффект наибольший в то.м случае, когда вектор напряженности электрического поля световой волн1.1 перпендикулярен поверхности металла, и практически не име( г места в то.м случае, когда эта компонента Е отсутствует (рис. 8.16 селективный эффект для двух направлений поляризации  [c.435]

Помещая в ту или иную точку пространства, в котором заряженное тело В создает электрическое поле, другое заряженное тело А достаточно малых размеров ), мы при помощи прикрепленных к нему динамометров измеряем величину и направление силы Fa, действующей со стороны тела В на тело А. Изменяя величину заряда тела А, мы обнаружим, что в данной точке пространства эта сила Fa зависит только от величины заряда Ва, сообщенного телу А, а именно пропорциональна величине этого заряда. Следовательно, отношение FaIsa (при неизменном состоянии тела В, создающего электрическое поле) есть величина постоянная. Посколькуне зависит от величины заряда тела А, а зависит только от свойств тела В (его размеров, формы, величины его заряда e/j), это отношение может служить характеристикой того электрического поля, которое тело В создает в данной точке пространства. Это отношение определяет напряженность электрического поля тела В в данной точке пространства. Так как сила Fa, действующая на тело А, есть вектор, то и отношение этой силы к заряду Ва, т. е. к скалярной величине, также есть вектор, совпадающий по направлению с вектором Fa, если заряд тела положителен, и обратный по направлению вектору Fa, если заряд тела ед отрицателен. Таким образом, вектор напряженности электрического поля в данной точке  [c.77]

Составим выражение для циркуляции напряженности электрического поля Е по бесконечно малому контуру ab d (рис. 13.7), вызванного изменением по времени вектора магнитной индукции дВ1д1, перпендикулярного вектору Е  [c.194]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]

Поляризационные явления в одноосных кристаллах. Оптическая ось одноосного кристалла характеризует направление, при распространении в котором луч света ведет себя как в изотропной среде, т. е. распространяется в среде П1ЭИ любой поляризации с одной и той же скоростью (при данной частоте). Однако при неколли-неарности луча и оси одноосного кристалла ситуация существенно изменяется. Через луч, направленный под углом к оптической оси, и оптическую ось можно провести плоскость, называемую главной (рис. 18). В этом направлении возможными являются лишь лучи света, вектор напряженности электрического поля которых колеблется либо в главной плоскости ( необыкновенный луч), либо перпендикулярно главной плоскости ( обыкновенный луч). Скорость необыкновенного луча зависит от угла между лучом и оптической осью скорость обыкновенного луча одинакова по всем направлениям (поэтому он и называется обыкновенным). Если луч света падает на плоскую поверхность одноосного кристалла, вырезанного параллельно оптической оси по нормали к поверхности (рис. 19), то в кристалле распространяются два пространственно совпадающих луча с взаимно перпендикулярными направлениями линейной поляризации. При угле падения, отличном от нуля (рис. 20), происходит преломление каждого из лучей в соответствии со скоростью распространения света в кристалле, т. е. при показателе преломления п = /v, где с-скорость света в вакууме, у-скорость света в кристалле. Поэтому после преломления обыкновенный и необыкновенный лучи имеют различные направления и начинают пространственно разделяться, т.е. падающий луч испытывает  [c.34]



Смотреть страницы где упоминается термин Напряженности электрического поля вектор : [c.469]    [c.316]    [c.552]    [c.265]    [c.52]    [c.122]    [c.482]    [c.305]    [c.97]    [c.306]    [c.33]   
Сложный теплообмен (1976) -- [ c.10 ]



ПОИСК



Вектор напряженности

Вектор напряженности электрического пол

Вектор электрического поля

Напряженно

Напряженность

Напряженность поля

Напряженность электрического поля

Циркуляция вектора магнитной напряженности электрического поля

Циркуляция вектора напряженности электрического поля

Электрический вектор

Электрическое Напряженность

Электрическое поле

Электрическое поле. Напряженность поля



© 2025 Mash-xxl.info Реклама на сайте